

RIVERSIDE PUBLIC UTILITIES

WATER | ENERGY | LIFE

PUBLIC UTILITIES

RIVERSIDE PUBLIC UTILITIES - PLANNING DATELINE

WORKING THE PLAN

Q4 - 2015

October 2015

Fiber Optic Plan Northside Audit Transactions to Board and Council

Oct.-Dec. 2015

Roadmap Feedback Fiscal Policies Audit Organizational Review Thriving Financially to Board and Council

Q1 - 2016

Jan.-Mar. 2016

Draft Financial Plan (5 year forecast) Performance Audit (next phase) Detailed Finance Audit to Board and Council

City Council Board Public Utilities Board Board Board Council Board Council

HOW ROADMAPS SUPPORT OUR GOALS

HOW IT FITS TOGETHER

THE PLANS

RECYCLED WATER

WATER INFRASTRUCTURE

INTEGRATED WATER

WORKFORCE DEVELOPMENT

FACILITIES PLAN

RPS POWER IMPLEMENTATION

INTEGRATED POWER RESOURCES

FIBER BUSINESS

TECHNOLOGY

CONSERVATION AND EFFICIENCY

FINANCIAL PRO FORMA - 10 YR

FEEDBACK PROCESS

RIVERSIDE PUBLIC UTILITIES

WATER | ENERGY | LIFE PUBLIC UTILITIES

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC RE-CAP

Background Reliability Technology **Overhead Assets Underground Assets Substations Options – Selective Infrastructure Discussion/Feedback**

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC - GOALS

INFRASTRUCTURE IMPROVEMENT

- Address aging infrastructure.
- Improve system safety and reliability.
- Increase the use of technology to inform future planning and increase conservation.
- Use financial pro forma to strike investment balance. CONSERVATION AND EFFICIENCY

FINANCIAL PRO FORMA - 10 YR

THE PLANS

WORKFORCE DEVELOPMENT

FIBER BUSINESS

TECHNOLOGY

ELECTRIC INFRASTRUCTURE

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - ELECTRIC

WORKFORC

INFRASTRUCTURE IMPROVEMENT BACKGROUND

THRIVING

ADVANCED

FINANCIALLY

Summary of Investment Options

Additional financial investment is required to address current backlog and improve maintenance.

Infrastructure Maintenance on the back burner

Poles–Progression Over Time

Infrastructure Maintenance Work Processes

- Technology incorporated into equipment needs
- Annual circuit patrol
- Solid inspection processes are vital

We are not alone...

- RPU is behind in technology
- Most utilities have AMI
- RPU 15% of poles need repair or replacement
- SCE 22% of poles
- LADWP 27% of poles, workforce issues

PUBLIC UTILITIES ANAHEIM NET/UTILITIES

An EDISON INTERNATIONAL *

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC RE-CAP

WORKFORC

INFRASTRUCTURE IMPROVEMENT RELIABILITY

THRIVING

ADVANCED

FINANCIALLY

We made a plan... 2009 Electric System Master Plan

Maintain/Improve Reliability

- Replace aged equipment prior to failure
- Reduce equipment loading
 - Improve sectionalizing, transfer capacity, and outage response

Plan For Long-Term Growth and Annexations

- Arlanza and Casa Blanca subs and new sub-transmission
- Reinforce circuits to meet future load levels

Technology to Improve Operating Practices and Efficiency

 Outage management, asset management, advanced metering, and smart grid

Recent work with more needed

- 2009 Orange Crest Substation Capacity Addition \$5M
- 2013 Casa Substation Rebuild \$15M
- 2014 STP (Sub Transmission Project) \$20M
- 2015 MPRP Magnolia Plaza Reliability Project \$16M

Electric System Reliability

System Average Interruption Frequency Index (SAIFIx)

Circuits

Illustrating our Reliability

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC RE-CAP

WORKFORC

INFRASTRUCTURE IMPROVEMENT TECHNOLOGY

THRIVING

ADVANCED

FINANCIALLY

How Applications work together with new Equipment

Applications and Equipment have a Conversation

Power Plants

Transmission Networks

Substations

Distribution **Networks**

Customers

Technology Options

Option 1	Option 2	Option 3	Option 4	
DA Pilots SCADA Hardware AMR Rollout Mobile Radio In flight projects	Implement Technology Strategic Plan \$1M/Yr EV infrastructure \$15M LED Streetlight Change			
Remain a follower	Implement anticipated technology needs for sustainability and resiliency			
\$25M	\$85M	\$85M	\$85M	
lePublicUtilities.c		WATER ENER		

Riversid

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - ELECTRIC

WORKFORC

INFRASTRUCTURE IMPROVEMENT OVERHEAD ASSETS

THRIVING

ADVANCED

FINANCIALLY

Overhead Options

Option 1	Option 2	Option 3	Ор
4kV x 12kV in 11 yrs 2,000 poles 300 Equipment	4kV x 12kV in 7 yrs 4,850 poles 600 Equipment	4kV x 12kV in 5 yrs 5,900 poles 720 Equipment	4k\ 9,8 1,2
Increased likelihood of outages and damage	Maintain the system	Increased maintenance, decreased likelihood of outages and damage	Agg rep und ind
\$49M	\$120M	\$145M	\$22

RiversidePublicUtilities.com

tion 4

V x 12kV in 5 yrs 800 poles 800 Equipment

gressive placement, common in the lustry

28M

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - ELECTRIC RE-CAP

WORKFORC

INFRASTRUCTURE IMPROVEMENT UNDERGROUND ASSETS

THRIVING

ADVANCED

FINANCIALLY

Underground Options

Option 1	Option 2	Option 3	Opti
54 Miles of Cable 170 Structures 100 Devices	64 Miles of Cable 270 Structures 120 Devices	77 Miles of Cable320 Structures145 Devices	128 540 9 240
Increased likelihood of outages and damage	Maintain the system	Increase maintenance, decrease likelihood of outages and damage	Aggr repla unco indus
\$80M	\$106M	\$126M	\$208

RiversidePublicUtilities.com

on 4

Miles of Cable Structures Devices

ressive acement, ommon in the stry BM

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - ELECTRIC RE-CAP

WORKFORC

INFRASTRUCTURE IMPROVEMENT SUBSTATIONS

THRIVING

ADVANCED

FINANCIALLY

Harvey Lynn T3 Before and After

Substation Options

Option 1	Option 2	Option 3	C
0 New substations 5 Transformers 3 Switchgears 45 Breakers 375 Relays	 0 New substations 7 Transformers 4 Switchgears 70 Breakers 540 Relays 	 New substation Transformers Switchgears Breakers Relays 	2 1 6 5
Increased likelihood of outages and damage	Increase replacements, decreased likelihood of outages and damage	New Arlanza substation, additional switchgear and relay replacement	N S A L ii
\$45M	\$65M	\$79M	\$

RiversidePublicUtilities.com

Option 4

2 New substations LO Transformers 5 Switchgears 35 Breakers 570 Relays

New Arlanza and Springs(2) substations. Aggressivereplacement, uncommon in the ndustry \$102M

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT -ELECTRIC RE-CAP

WORKFORG

INFRASTRUCTURE IMPROVEMENT OPTIONS OVERVIEW

- Options serve to enable discussion.
- There is a strong desire to preserve a sustainable and resilient utility.
- Aging infrastructure is an industry wide issue.
- Solid inspection processes are vital.

THRIVING

ADVANCED

CEDEVELOPMENT

FINANCIALLY

TECHNOLOGIES

Options

Option 1: \$171M - \$206M5.2% of Electric Fund BudgetOption 2: \$317M - \$381M9.2% of Electric Fund BudgetOption 3: \$365M - \$439M10.5% of Electric Fund BudgetOption 4: \$519M - \$623M14.2% of Electric Fund Budget

RiversidePublicUtilities.com

Option 1 (Status Quo)
 Conduct Projected Repairs Option 2
 Conduct Projected Repairs / More Proactive Option 3
 Very Proactive Option 4

Summary of Investment Options

Additional financial investment is required to address current backlog and improve maintenance.

Next Steps

- Incorporate Comments
- Formulate Detailed recommendations
- Review
- **Report Back**

FEEDBACK

THRI

ADVAN

FORCE DEVELOPMENT

INFRASTRUCTURE IMPROVEMENT

ING FINANCIALLY

CED TECHNOLOGIES

RIVERSIDE PUBLIC UTILITIES

WATER | ENERGY | LIFE PUBLIC UTILITIES

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER RE-CAP

Executive Summary Feeback Answers

- SAFE W.A.T.E.R Plan
- Pipeline Replacement
- Treatment Plants
- Technology Options
- Investment Options

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - WATER

WORKFORC

INFRASTRUCTURE IMPROVEMENT EXECUTIVE SUMMARY

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER - GOALS

WATER INFRASTRUCTURE

- Address aging infrastructure.
- Improve system safety and reliability.
- Increase the use of technology to inform future planning and increase conservation.
- Use financial pro forma to strike investment balance. CONSERVATION AND EFFICIENCY

FINANCIAL PRO FORMA - 10 YR

THE PLANS

RECYCLED WATER

WATER INFRASTRUCTURE

INTEGRATED WATER

WORKFORCE DEVELOPMENT

TECHNOLOGY

Water Infrastructure Assessment

Water System:

- Significant improvement have been made through the CIP process, but areas of criticality remain.
- Significant pipeline replacement needed.

Technology:

- Leverage technology to realize increased efficiency and effectiveness.
- Improve SCADA and network communication to further enhance security. Workforce:
- Workforce needs training to have Utility 2.0 skill sets.
- Knowledge transfer needed for aging workforce. lacksquare

Financials:

- **Strong Financial Position**
- Continue efficiency improvements

Infrastructure Assessment

Asset	Criticality	Last 10 Years	Status
Wells		\$20 Million	On target
Treatment Plants		\$30 Million	On target
Distribution Facilities		\$15 Million	On target
Reservoirs		\$45 Million	On target
Transmission Mains		\$35 Million	Deficient
Distribution Pipelines		\$90 Million	Deficient
Technology		\$15 Million	Deficient

Criticality: High	Moderate	Low	
-------------------	----------	-----	--

RiversidePublicUtilities.com

Next 10 Years

\$21-\$29 Million

\$19-\$27 Million

\$6-\$10 Million

\$5-\$7 Million

\$84-\$102 Million

\$107-\$198 Million

\$44-\$64 Million

Summary of Investment Options

Additional financial investment is required to address current backlog and improve maintenance.

RiversidePublicUtilities.com

Aggressive Program

$\downarrow \uparrow$

\$342-437 million

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - WATER

WORKFORC

INFRASTRUCTURE IMPROVEMENT FEEDBACK ANSWERS

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Feedback

- What did we get from the SAFE WATER Plan?
 - New Infrastructure
 - Additional Storage
 - Water Independence
- What is a sustainable rate of pipeline replacement?
 - Distribution Pipeline
 - Transmission Pipeline
- What about the North Waterman Treatment Plant?
- What are we doing about Technology?

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - WATER

WORKFORC

INFRASTRUCTURE IMPROVEMENT SAFE W.A.T.E.R. PLAN

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

CIP Expenditure by Fiscal Year

CIP by Category since 1996

25% of total spent prior to Safe WATER Plan, mainly on recurring expenses and treatment

- Pipeline Replacements
- Recurring Expenditures
- Treatment Plants
- Reservoirs
- PW/Caltrans/Outside
- Facility Rehab
- Misc/Special
- Boosters
- Property
- Wells
- Recycled Water

Safe WATER Plan

Water Facilities	Safe WATER Plan
49 Active Wells	Replaced 10 Wells
16 Storage Reservoirs (109 MG)	Restored 33 MG, added 8 MG
11 Treatment Plants	Added JW North
41 Booster Stations	18 new or rebuilt
27 Pressure Reducing Stations	14 new or rebuilt
64,000 meters	35,000 replaced
824 miles of distribution pipeline	62 miles replaced
132 miles of transmission pipeline	6 miles replaced

Safe WATER → Water Independence

- JW North
 - Converted irrigation wells to potable wells
 - Added 10% capacity
- Booster Station replacement/upgrades
 - Prior Booster Stations unable to maintain Campbell Reservoir
 - Replacements pushed water uphill during summer months
- Whitegates Reservoir Replacements
 - Increased storage from 1 MG to 9 MG
 - Provided added protection to 1200 zones

Imported Water Deliveries

Imported Water Savings

• Averaged 1,500 afa from 2000 to 2007

– \$1 to \$2 Million per year

• A total of \$7 Million to \$10 Million saved from 2008-2015

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - WATER

WORKFORC

INFRASTRUCTURE IMPROVEMENT PIPELINE REPLACEMENT

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Sustainable Pipeline Replacement

- Water Distribution Pipeline (smaller pipelines)
 - Leak rates
 - Expected Lifetimes
- Water Transmission Pipeline (larger pipelines)
 - Capacities
 - Internal inspections
 - Leak rates

Annual Distribution Line Leaks

Active Leaks Map

Premature Pipeline Failure

Failed Cast Iron Distribution mains removed from service December 2014. Installed c. 1950.

Distribution Pipeline Replacement Needs 2015 Dollars

\$30.000.000.00																
<i></i> ,,																
\$25,000,000.00																
\$20,000,000.00																
\$15.000.000.00	ç	515 Mil	lion pe	er year	, 11 m	iles/ye	ar, 75-	year Li [.]	fe Cycl	е						
<i>+</i> ,,,																
		\$11 M	illion p	er yea	r, 8.5 n	niles/y	ear, 10	0-year	Life Cy	ycle						
\$10,000,000.00		\$8.6 M	lillion p	oer yea	ar <i>,</i> 6.5 i	miles/γ	/ear, 1	30-yea	r Life C	ycle						
\$5.000.000.00																
\$0.00	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030

Distribution Pipeline Options

Option 1	Option 2	Option 3	Opt
130-Year Life Cycle	100-Year Life Cycle		75-
Increased leaks and disruptions as Cast Iron pipe ages	Capture "tsunami" if Cast Iron Life Cycle is slightly longer		Cap if C Cyc
\$86M	\$110M		\$15

RiversidePublicUtilities.com

tion 4

Year Life Cycle

oture DM "tsunami" ast Iron pipe Life cle is shorter

50M

Supply Transmission Mains – Good Condition

Distribution TM – Undersized/At Risk

Transmission Main Pipeline Options

Option 1	Option 2	Option 3	Opt
Handle TM projects driven by others (Street, Bridge and RR projects)	Address Techite Pipeline and replace in like and kind	Address major bottlenecks in TM system	Inclu bott syst
Increased risk of major failure	Reduce major risk, retain system inefficiencies	In-lieu of \$22M Reservoir project	Mos 10+ dem
\$6M	\$28M	\$67M	\$94

RiversidePublicUtilities.com

ion 4

ude moderate tlenecks in TM em

st projects can wait years unless major hand increase

Μ

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - WATER

WORKFORC

INFRASTRUCTURE IMPROVEMENT TREATMENT PLANTS

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

What about the North Waterman Treatment Plant?

- Higher levels of Perchlorate in North Waterman Wells
 - Levels expected to increase
- Possible changes to regulations
 - MCL could be reduced from 6 parts per billion (ppb) to 2 or 1 ppb
- Impacts to blending capacity
 - Without additional treatment, lose up to 20% of our supply

Treatment Plant Options

	Option 1	Option 2	Option 3	Opt
	J.W. North Treatment Plant Maintenance	North Waterman Treatment Plant		Rive Trea
	Replace membranes on a regular basis	Address risk of rising Perchlorate levels and lower MCL		lmp sent
	\$2.5M	\$16M		\$22

RiversidePublicUtilities.com

ion 4

erside Canal tment Plant

rove water quality to the Gage Canal

Μ

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - WATER

WORKFORC

INFRASTRUCTURE IMPROVEMENT TECHNOLOGY OPTIONS

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Water and Technology

Technology Options

Option 1	Option 2	Option 3	Op
Baseline OT projects, ODMS, Asset Management	Increased SCADA functionality and continue system automation	AMI System	
Mostly "In-Flight" projects	Increased water system efficiencies	Operational Efficiency, Improve customer outreach, Increased Conservation	
\$36M	\$41M	\$55M	

RiversidePublicUtilities.com

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT - WATER

WORKFORC

INFRASTRUCTURE IMPROVEMENT INVESTMENT OPTIONS

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Option 1 = \$170-\$216 Million Option 2 = \$226-\$293 Million Option 3 = \$279-\$357 Million **Option 4 = \$342-\$437 Million** Stay the same with replacements, DM Replacement 130-Yr Cycle Address major TM Risks, DM Replacement 100-Yr Cycle, North Waterman Treatment Improve TM Operations, Install AMI DM Replacement 75-Yr Cycle, Additional TM, Riverside Canal Treatment

RiversidePublicUtilities.com

Summary of Investment Options

Additional financial investment is required to address current backlog and improve maintenance.

RiversidePublicUtilities.com

Aggressive Program

$\downarrow \uparrow$

\$342-437 million

Next Steps

- Incorporate Comments
- Formulate Detailed recommendations
- Review
- **Report Back**

RiversidePublicUtilities.com

FEEDBACK

THRI

ADVAN

FORCE DEVELOPMENT

INFRASTRUCTURE IMPROVEMENT

ING FINANCIALLY

CED TECHNOLOGIES

RIVERSIDE PUBLIC UTILITIES

WATER | ENERGY | LIFE PUBLIC UTILITIES

RiversidePublicUtilities.com

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WORKFORCE DEVELOPMENT GOALS

WORKFORCE DEVELOPMENT

- Ensure ready labor force to implement Utility 2.0
- Address ongoing resource and skill requirements \bullet for RPU to function in the changing utility environment
- Promote and facilitate employee training and \bullet development
- Enhance customer service

THE PLANS

WORKFORCE DEVELOPMENT

FACILITIES PLAN

TECHNOLOGY

Workforce Development Objectives

- Identify, assess, and bridge competency gaps that result from workplace and technology changes
- Align workforce requirements with strategic plan and division "roadmaps"
- Address recruitment challenges in partnership with Human **Resources** Department
 - Aging workforce "Silver Tsunami"
 - Evolving job specifications
 - Expectations of millennials

Workforce Assessment Current

- Strong competencies for today's needs
- Improved processes dictate new skill sets
- Lack of classifications for jobs of the future
- No formal tracking system for assessing and measuring employee competencies and skills growth
- Tuition reimbursement program not adequate to sustain today's workforce

RPU Workforce by Age

RiversidePublicUtilities.com

50-55

30-49

RPU Retirement Projections

RiversidePublicUtilities.com

(5 years of service @55)

Most Likely to Retire (25) years of service @55)

Industry Facts: 36% - 5 Years 55% - 10 Years

Workforce Structure

- 200+ Job classifications in RPU
 - 152 unique "Utilities" job classifications
 - 50+ city-wide classifications
- Two formal bargaining units
 - IBEW Local 47
 - SEIU Local 721
- Management Structure
 - Classified
 - Non-classified

Utility 2.0 Workforce Assessment

- Begin shift from organization of the past
- Embed workforce development staff within RPU
 - Specialized skills
 - HR of today not the same organization needed for future
- Staff support for needed for the future
 - Data analytics and visualization
 - Project and technology management
 - Business process analytics

Utility 2.0 Workforce Assessment

- Knowledge transfer needed for aging workforce
 - Bridge gap on legacy systems
 - Pass critical infrastructure and historic operating knowledge to next generation
- Training needed to prepare for Utility 2.0 competencies
 - No formal training program to prepare today's employees for the future
 - Tuition reimbursement not adequate to sustain tomorrow's workforce

to next generation ncies r the future workforce

Utility 2.0 Competency Map

Figure 2: Smart Grid Skills Requirements

Utility 2.0 Workforce Strategy

Recruit/Promote

Competencies Classifications Career ladders Education - contract - sponsor - contract - sponsorship **Seminars** Conferences Enrichment

Compensatio

Competitive Salary Benefits Hours/schedule

ROAD MAPS – WORKFORCE DEVELOPMENT

WORKFORCE DEVELOPMENT RECOMMENDATIONS

INFRASTRUCTURE IMPROVEMENT

Summary of Recommendations Partnership with Human Resources

People

- Develop new Utility 2.0 appropriate classifications
 - Analyze core competencies and reconcile to current classification
- Focus near-term recruitments on Utility 2.0 transformation
 - Project Management Ο
 - Data Analysis and Visualization \bigcirc
 - Communication (Internal and External) Ο
 - **Business Analysis and Transformation** Ο
- Embedded workforce and operational technology support within RPU
- Implement formal job transition training programs
 - Contract Education (partnership with RCCD and HR)
 - **RPU Education sponsorship program**

Summary of Recommendations Partnership with Human Resources

Process

- Career development plans/discussion
 - Annual with employee performance appraisal
 - Initiated by manager/supervisor
- Modify recruitment processes to be more nimble
 - Continue/Expand use of eligibility lists
 - Continued conversion of paper processes to automated processes
 - Enhance training for hiring managers
- Review compensation policies and levels more frequently
 - Develop standard process for salary reviews
 - Develop standard process for classification comparisons
 - Incorporate into annual budget process

Summary of Recommendations Partnership with Human Resources

Technology

- Implement Talent Management System
 - Knowledge capture and transfer
 - Track and monitor employee training and education
 - Project staff turnover

FEEDBACK

INFRASTRUCTURE IMPROVEMENT

RIVERSIDE PUBLIC UTILITIES

WATER | ENERGY | LIFE PUBLIC UTILITIES

RiversidePublicUtilities.com

Employee Appreciation

Significant contributions were made by:

Bob Tang Cindy Reeley Jeff Leach Andrew Parks Scott Lesch Roy Xu Jarod Mayne

What you do today can improve all your tomorrows.

Ralph Marston

COMING TOGETHER IS A BEGINNIG. KEEPING TOGETHER IS PROGRESS. WORKING TOGETHER IS SUCCESS.

20109-1010

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC – POWER SUPPLY

Executive **Power Market History** Virtual Tour – adapting to industry changes **Planning for Tomorrow IRP** – Findings **Other Findings** The Big Picture Options

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC - POWER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY EXECUTIVE SUMMARY

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC - POWER SUPPLY GOALS

- Address limited infrastructure.
- Improve system safety and reliability.
- Increase the use of technology to inform future planning and increase CONSERVATION AND EFFICIENCY conservation.

FINANCIAL PRO FORMA - 10 YR

THE PLANS

TECHNOLOGY

Utility 2.0

Balancing Customer Demand & Power Needs

Load Forecast and Resources

THE BIG PICTURE – 3 Major Issues of Today...

- 1. How will we replace IPP
- 2. How will we meet our RPS
- 3. How will we integrate demand and supply

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC - POWER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY POWER MARKET HISTORY

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Evolution of CA. Power Market

RiversidePublicUtilities.com

FUTURE (CY 2016-2030)

108

Geography – Local Markets with SCE **Operation Model** – SCE \rightarrow \leftarrow Riverside; Bilateral Power Transactions **Contractual Arrangements** – Integrated Operations Agreement (IOA) 150 pages Power Supply Cost - \$105 million TRR Revenue – N/A **Product Complexity –** - Energy ; Demand Settlements: - Only 2 Charge Codes to settle every month Staffing – Low - 19 FTE's

FUTURE:

Geography – Regional Centralized Markets **Operation Model – EVOLVING - more complex**, more Distributed Power Grid?

Data, Data, Data, Data

Contractual Arrangements –

- CAISO Tariff: Approx. 5,000+ pages
- Distribution Grid Tariff TBD
- **Power Supply Cost -** \$188 million

TRR Revenue – \$334 million

Product Complexity – Continue to EVOLVE in complexity Potential Emergence of Distributed Power Grid:

- **DG resources** -
- **Micro-grids**
- **Demand Response** -
- **Electric Vehicle (EV)** -
- **Energy Storage**

Staffing – Increased to 37 FTE's

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC - POWER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY VIRTUAL TOUR

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

irtual Tour - Generation (decommissioned) San Onofre Nuclear Generating Station (SONGS)

Technical Specs:

- Budget: approx. \$18 M
- Fuel type: Nuclear (3,150 MW)
- Jointly Owned Project
- **Riverside Share:** •
 - 1.79% or 38.5 MW
- Term: 1983/84 2024
- **Riverside Investment:** \$165 M
- 14% of RPU Load
- June 7, 2013 SCE unilaterally decides to shutdown SONGS Decommissioning Agreement approved by PUB/CC
- **Decommissioning fully** funded \$76 M

•

Virtual Tour – Coal Generation Intermountain Power Project (IPP)

Technical Specs:

- Budget: \$46 M (FY 2016)
- Fuel type: Coal (1,800 MW)
- Take or Pay PPA
- Total Capacity: 1,800 MW
 - Riverside Share: 136 MW
- Total Investment: \$3 Billion
 - Riverside Share: 228 Million
- Term: 1986-87 2027
- 50% of RPU Load

SB 1368 prevents extension Working to repower w/natural gas thru 2077

Virtual Tour – Transmission Southern Transmission System (SCPPA)

- Budget: \$12 M (FY 2016) ullet
- 256 mile transmission line ightarrow
- Take or Pay Contract igodol
- Transmission Capacity: 1,923 ulletMW
 - SCPPA Share: 352 MW
 - Riverside Share: 18 MW \bullet
- Total Investment: \$57 M ullet
 - Riverside Share: \$2.3 M
- AC transmission line from ulletWestwing Substation in Phoenix to Marketplace Substation near Boulder City, Nevada

Virtual Tour – Transmission Northern Transmission System (NTS)

- Budget: \$1.7 M (FY 2016)
- Project funded through bonds issued by the Intermountain Power Agency (IPA)
- 50 mile transmission line
- Transmission Capacity: 1,923 MW
 - Riverside Share: 157 MW thru a settlement with LADWP for transmission from Adelanto to Victorville-Lugo
- Two 345kV AC transmission lines from IPP Generation Station to Mona, Utah

Virtual Tour – Generation Palo Verde (SCPPA)

Technical Specs:
Budget: \$4.2 M (FY 2016)
Total Investment: \$708 M
Riverside Share: \$38 M
4% of RPU Load
Nuclear - 4,010 MW
SCPPA Share: ~237 MW
Riverside Share: 12 MW
Term: 1986-88 - 2030
Located near Phoenix, AZ

Virtual Tour – Generation

Hoover (SCPPA)

- Budget: \$1.2 M (FY 2016)
- Fuel type: Large Hydro (1,951 MW)
- Take or Pay PPA
- SCPPA Share: 94 MW
 - Riverside Share: 30 MW
- Term: 1986 2017
- Hoover Power Allocation Act of 2011 extends to 2073
- Total Investment: \$21 M
 - Riverside Share: \$7 M
 - 1% of RPU Load
- PUB/CC approval of new contact mid 2016

Virtual Tour – Transmission Mead-Phoenix Project (SCPPA)

- Budget: \$300,000 (FY 2016)
- 256 mile transmission line
- Take or Pay Contract
- Transmission Capacity: 1,923 MW
 - SCPPA Share: 352 MW
 - **Riverside Share: 18 MW**
- Total Investment: \$57 M
 - Riverside Share: \$2.3 M
- AC transmission line from Westwing Substation in Phoenix to Marketplace Substation near **Boulder City, Nevada**

Virtual Tour – Transmission

Mead-Adelanto Project (SCPPA)

- Budget: \$3.3 M (FY 2016)
- 202 mile transmission line
- Take or Pay Contract
- Transmission Capacity: 1,291 MW
 - SCPPA Share: 877 MW
 - Riverside Share: 118 MW
- Total Investment: \$173 M
 - Riverside Share: \$23 M
- AC transmission line from Adelanto Substation to Marketplace near Boulder City, Nevada

Virtual Tour – Generation Bonneville Power Administration (BPA)

- Budget: Energy Exchange
- Fuel type: Large Hydro
- Diversity Exchange Agreement Riverside Share:
- 40 MW May June
 - 60 MW July October –
 - 15 MW November April
- Term: 1996 2016
- 4% of RPU Load

Energy Crisis –Lessons Learned

2000-2001 CA Energy Crisis

- Investing in reliability
- PUB Goal—Add local Generation
- \$280 M investment in 268 MW Total

14 of 21 FTEs are Veterans

80 Years of Service

- 9 navy
- 4 marines
- 1 army

Virtual Tour – Internal Generation Springs

- Total Investment: \$46 M
- 14,000 HR
- Built: 2003
- Fuel type: Natural Gas
- Four 10 MW Units (40 MW)

Virtual Tour – Generation **Riverside Energy Resource Center (RERC)**

Virtual Tour – Internal Generation Specs: Clearwater (Corona)

- Total Investment: \$48 M
- 8,600 HR
- Riverside Purchased in 2010
- Fuel type:
 - Natural Gas Cogeneration
 - Combustion (Gas) turbine, HRSG and steam turbine

Virtual Tour – Geo Thermal Generation

Salton Sea

- Budget: \$24.6 M (FY 2016)
- Take and Pay Renewable PPA
- Riverside Share:
 - 46 MW until 2016
 - 66 MW until 2019
 - 86 MW until 2039
- Term:
 - 2003 2020 Unit 5
 - 2017 2039 Portfolio
- 15.6% of 2016 RPU Load
- 21.2% of 2019 RPU Load
- 27.0% of 2020 RPU Load

Virtual Tour – Renewable

Wintec, Wagner, and Cabazon

Technical Specs:

- Budget: \$5.9 M (FY 2016)
- Fuel type: Wind
- Renewable PPA
- Riverside Share:
 - 1.3 MW Wintec
 - 6.0 MW WKN
 - 39.0 MW Cabazon

- Term:
 - 2003 2018 Wintec
 - 2012 + 2032 WKN
 - 2015 2024 Cabazon
- 4% of RPU Load

Virtual Tour – Renewable Columbia II (SCPPA)

- Budget: \$2.3 M (FY 2016)
- Fuel type: Solar PV
- Renewable PPA
- SCPPA Project capacity of 15MW:
 - Riverside Share: 11.1 MW
 - Other SCPPA participants are Pasadena and Azusa.
- Term: 20 years expiring in 2034
- 1.46% of RPU Load
- Project Owned and Operated by Dominion

Virtual Tour – Renewables (Under Development) Tequesquite Landfill Solar Project

- Budget: \$1.2 M (FY 2017)
- Utility Scale (inside RPU)
- Fuel type: Solar PV
- Renewable PPA
- Project Size: 7.5 MW
- Term: 2016 2040
- Currently under construction with COD scheduled for September 2015.
- Project Owned and Operated by SunPower.

Virtual Tour – Renewables (Under Development) **AP North Lake**

Technical Specs:

in an the ball of the state

- Fuel type: Solar PV
 - Renewable PPA
- Project Size: 20 MW

- 2.42% of RPU Load
- Project Owned and Operated by-SunEdison

Budget: \$4.7 M (FY 2017) • Utility Scale located in Hemet, CA

Term: 25 years expiring in 2040. Currently under construction with COD scheduled for July 2015.

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – ELECTRIC – POWER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY PLANNING FOR TOMORROW

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Balancing Customer Demand & Power Needs

Load Forecast and Resources

Electric Utility - Budget Comparison 2001-2014

RiversidePublicUtilities.com

134

RPU Resource costs (\$/MWh) and % Contribution to Load

RPU Resources: Costs (\$/MWh) and % Contribution to Load

RPU's Power Needs Continues to Grow

Customer Usage

Load Duration Curve for 2014

Vista Limitation			
Int	ernal Ge	neration	
80%	٩٢)%	100%

What the load looks like on different days

2016 RPU Typical Hourly System Load Profiles

Planning -- Bringing it Together...

What is an Integrated Resource Plan (IRP)? The IRP is used to guide decision making as RPU plans to meet its forecasted annual peak and energy demand (along with an appropriate reserve margin), using a combination of supply-side and demand-side resources over a period into the future.

- Work the plan or the plan won't work
- Periodic updates are required

RiversidePublicUtilities.com

Alphabet Soup of Mandates... More to Come??

Issues impacting RPU's planning process for future resource portfolio

- 2006 AB 32: California GHG Reduction Mandate
- 2006 SB 1368: Emission Performance Standard
- 2006 AB 2021: EE/DSM
- 2010 AB 2514: Energy Storage
- 2011 SB X1-2: Renewable Portfolio Standard (RPS)
- 2011 Distributed Generation (DG): Governor's executive directive \bullet
- 2013 Flexible Resource Adequacy Criteria/Enhanced Must Offer Oblig. (FRAC/MOO & MIC)
- 2014 CAISO/CPUC Joint Reliability Framework
- 2014 Energy Imbalance Market (EIM) Initiative lacksquare
- 2014 FERC Order 764: 15 Minute Market Initiative
- 2015 AB 350 (50% RPS, 50% more EE, 50% Transportation Electrification)
- 2015 SB 32 AB 32 Phase II
- More to come???

requiring RPU engagement

WIP --- Rules are frequently revised,

Riverside's Renewable Procurement Early Adoption

D PUB/City Council – EARLY ACTIONS

- Oct 2002 PUB Strategic Plan Add 25 MW renewables
- 2003 PUB/CC Adopt 15% RPS goal by 2015
- 2003 & later: RECs, geothermal, landfill gas, wind, etc.,
- 2007/2008 PUB/CC revised RPS goal
 - 20% by 2010; 25% by 2015; 33% by 2020
- **2011** First POU mandate (33% by 2020) CA SB X1-2
- **Early action credit Historic carryover (762,000 MWhs)**

RiversidePublicUtilities.com

Early Actions today's value \$11.8 million

141

Securing a Reliable, Sustainable Energy Future

Securing a Reliable, Sustainable Energy Future

LONG TERM FUTURE (CY 2021-2030)

Securing a Reliable, Sustainable Energy Future

Nuclear Fossil Fuel Hydro Other Renewable

2015

Nuclear Fossil Fuel Hydro Other Renewable

2020

LONG TERM FUTURE (CY 2021-2030)

Unspecified Renewables

Solar
Securing a Reliable, Sustainable Energy Future

2002 15% 61%

Nuclear E Fossil Fuel Hydro Other Renewable

38% 209 32%

2015

Nuclear Fossil Fuel Hydro Other Renewable

2020

Wind

40%

LONG TERM FUTURE (CY 2021-2030)

Securing a Reliable, Sustainable Energy Future

LONG TERM FUTURE (CY 2021-2030)

2011 – RPS Outlook

RiversidePublicUtilities.com

147

318 MW Renewable Resource Procurements Since 2012

Project	MW	COD	Туре	End	PUB/CC	ſ
WKN Wind	6	2013	Wind	2032	2012	
Columbia II	11	2014	Solar PV	2034	2013	
Clearwater	14	2014	Solar PV	N/A	2013	
Cabazon	39	2014	Wind	2025	2013	
North Lake	20	2015	Solar PV	2040	2012	
Kingbird B	14	2015	Solar PV	2035	2013	
Tequesquite	7.5	2015	Solar PV	2040	2014	
Silverado (Amended)	20	2016	Solar PV	2041	2014	
Cal Energy (Portfolio)	Up to 86	Various	Geothermal	2039	2013	
sPower	25	2016	Solar PV	2036	2015	
Iberdrola	Up to 75	2016	Wind	2027	2015	

Total: \$2

Contract Value

\$27,771,000

\$39,259,000

N/A

\$29,472,000

\$124,673,000

\$46,750,000

\$36,662,000

\$70,538,000

\$1,205,661,000

\$64,876,000

\$64,357,000

\$1,710,018,000

RPU's Current PCC-1 Excess Procurement Can Be "Banked"

"Banked" Excess - Used to Satisfy Future Compliance Obligations

Renewable Power - 2021

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

Finding (IRP): Renewable Mandates Will Likely Continue

Work towards 40% RPS by 2020

- Maximize cost-effective renewable procurement
- Ensure procurements meet "excess procurement" (no regrets) criteria

Executive Order – 50% RPS... mandated soon

RiversidePublicUtilities.com

153

RPU's GHG Emission Profiles

GHG Emissions (Historical & Forecasted): 2006-2030

1st Deliverer Emissions 2020 CO2 Emissions Mandate – 2030 CO2 Emissions Target

- RPU actively reducing GHG emissions profile since 2008
- Continue reducing GHG footprint, at least through 2020
- Most significant reduction when IPP contract terminates

CALIFORNIA ELECTRIC LOAD WIND SOLAR EVS ENERGY Megawatt s STORAGE INCREASED 2016 SOLAR. RAMP OVER-GENERATION 2020 6PM 0 NOON GAM 23 MIDNIGHT Hour of day

UTILITY 2.0 - CAISO "Duck Curve "

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

Finding (IRP): Future – More Integration of Demand & Supply Resources

Search for Energy Storage / Demand Side Management (DSM) synergies

- Look at cost effectiveness for all RPU customers
- Demand response pilots, energy storage, DSM, DG
- Local Reliability considerations RTRP, more generation

RiversidePublicUtilities.com

161

How Will Riverside Replace IPP??? (Expires 2027)

Project Consists of:

- City of Riverside ("COR") share 7.617% 136 MW
- Provides 35 45% of energy needs
- 2019 Repower from coal to gas option-provides flexibility

Additional IPP Replacement Options

(see Chapter 11 of RPU IRP)

Scenario	Capacity (MW)	Location	Description	Dispatch Flexibility	Permitting challenge	% Increase to Net COS in 2030
Baseline	150	n/a market	Forward hedged market power contracts	None	n/a (None)	-
Ext.Gen	50*	Delta, UT	IPP Repower NatG CC	Moderate	Moderate	0.0%
Int.Gen	46.5*	Riverside, CA	ICE Wartsila Units	High	High	2.3%
Int.Gen	100*	Riverside, CA	GE LMS-100 NatG SC	High	High	3.4%
Green Power	75*	CA	PPA for new base-load renewable asset	Low	Low	6.0%

* L/T power hedges added (total 150MW) for scenario comparison purposes IRP Chapter 11 - Extensive information concerning each Alternative

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

Finding (IRP): Future of IPP Offers Many Options

Continue to examine all viable IPP Alternatives

- Pursue multiple alternatives;
- Maximize future flexibility for reliability and regulatory mandates
- When rules stabilize, quantify ancillary services/benefits
- Follow up studies for local reliability benefits

RiversidePublicUtilities.com

165

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

Finding (IRP) – Material Effects of Solar and Energy Efficiency

Monitor Customer Solar PV penetration levels

- Current rate structure must change fairness/equity
- Unbundled rates, time-or-use, adjustment clauses, etc.,
- Today -14MW; expect 33 MW by 2033
- Today's subsidy \$10.70/yr; Expect \$36/yr by 2033

RiversidePublicUtilities.com

uity 5, etc.,

167

Lost Revenues Solar and EE Challenges w/Current Rates

\$300
 \$250
 \$200
 \$150
\$100
\$50
\$0

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

Finding (IRP) : Future CAISO Markets Will be More Complex

Maintain flexibility in the CAISO Markets

- Participate in stakeholder processes (FRAC/MOO, Import Capacity, etc.)
- CAISO collaboration
- Alternatives to current operations
- Minimize cost exposure (RPS/ES/DG/ renewable integration costs)

California ISO Shaping a Renewed Future

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

SONGS - NRC Decommissioning Requirements Three Phases – (end date unknown)

	Decommissioning Planning (2014-2015) SONGS ceases operations and notifies NRC			Major Decommissioning Activities (2014-2032) Initiate activities, per the Post- shutdown Decommissioning Activities Report				License (In Perpe permane Conduct final subm
	St <mark>Done</mark> Decommissioning	t-shutdowr g Activities	า Report	NRC cor	In Proces	SS	nspections	NRC condu surveys and
	NRC reviews Post-shutdown Decommissioning Activities Report			Submit license termination plan				NRC approves report and
20	14 \$4.4B Fundi	ng: SCE SDGE APU RPU Total	<u>2014</u> \$3.05 \$0.86 \$0.13 <mark>\$0.08</mark> \$4.1B	<u>\$</u> B B B	<u>%</u> 91% 97% 118% 100% 93%) a hn ws ap	ctivities ical and of license proves plan	Dry Fuel Stora
** P Rec	Per 2014 DCE future u	unknowns cou	uld impact	: funding lev ep funding	els			

decommissioning – restrict funds (internally)

R

<u>Termination</u> <u>stuity or until</u> nt repository)

l status survey and nit reports

cts confirmatory d reviews report

final status survey modifies license

age Part 50 license emains

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

Other Finding: Resources Already Uses Advanced Technology

Production Cost Modeling Software

Energy Platform software

(Hourly CAISO energy, pricing and CRR information)

Deal Capture and Settlement Suite Software

High end Analytical and Business Intelligence software

Best Practice - Expand analytical capability and make data available to other divisions

RiversidePublicUtilities.com

174

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY

THRIVING

ADVANCED

FINANCIALLY

Legend

Eligible for Retirement (12)

Near Retirement (12)
Future Stars/vacancies

- Pending retirements of Resource Managers & Principals
- Retaining well trained staff is/will be a primary challenge
- Expanding analytical capabilities Department wide

Legend Eligible for Retirement (12)

Near Retirement (12)

Future Stars/vacancies

- Pending retirements of Resource Managers & Principals
- Retaining well trained staff is/will be a primary challenge
- Expanding analytical capabilities Department wide

Legend Eligible for Retirement (12)

Near Retirement (12)

Future Stars/vacancies

- Pending retirements of Resource Managers & Principals
- Retaining well trained staff is/will be a primary challenge
- Expanding analytical capabilities Department wide

Future Stars/vacancies

- **Retaining well trained staff is/will be a primary challenge**
- **Expanding analytical capabilities Department wide**

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY OPTIONS

THRIVING

ADVANCED

FINANCIALLY

THE BIG PICTURE: **Critical Issues - Future Direction**

- How will we replace IPP
 - **Explore all options, remain engaged**
- How will we meet our RPS
 - On Track to meet 50% by 2030
- How will we integrate demand and supply
 - Work-in-Process Collaboration, analytics, communication, advanced technology
 - **RTRP, DG, more generation, local reliability**

GWh

Future Options & Direction

Status	ISSUE	ACTION REQU
	Intermountain Power Project	Maintain flexibility – 2019 exit opt
	Renewable Portfolio Standard (RPS)	Increase RPS targets to 50% by 20 development activity
	San Onofre Nuclear Generating Station (SONGS)	Monitor decommissioning activity
	Integration Demand & Supply	ED, PB, Resources collaborations, generation, local reliabilty
	Analytic/Statistical Support	Expand Analytic team/support to
	Regulatory	Remain engaged in Regulatory issu
	CAISO	Remain engaged – Resolve FRAC/I for alternate operations
	Solar	Address RPU integration challenge
In-Pro On-go		

IRED

- tion
- 30; monitor
- and projected costs
- RTRP, internal
- other divisions
- ues impacting RPU
- MOO & MIC, prepare
- es (rates, subsidy, etc.,)

FEEDBACK

INFRASTRUCTURE IMPROVEMENT

Next Steps

- Incorporate Comments
- Formulate Detailed recommendations
- Review
- **Report Back**

RiversidePublicUtilities.com

RIVERSIDE PUBLIC UTILITIES

WATER | ENERGY | LIFE PUBLIC UTILITIES

RiversidePublicUtilities.com

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER SUPPLY

Executive Summary Details

- System History/Background
- System Assessment
- Findings
 - Infrastructure
 - Technology
 - Workforce
- Investment Options
- Sample Recommendations

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY EXECUTIVE SUMMARY

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER SUPPLY - GOALS

WATER INFRASTRUCTURE - SUPPLY

- Minimize operational reliance on imported water.
- Annually exercise groundwater export rights.
- Conjunctive management of water supply.
- Monetize unused and expiring local water rights.
- Ensure water supply availability.

CONSERVATION AND EFFICIENCY

FINANCIAL PRO FORMA - 10 YR

THE PLANS

RECYCLED WATER

INTEGRATED WATER

TECHNOLOGY

Water Supply

- RPU Independent from imported water
 - Starting in 2008 after more than 40 years
 - Historically about 5 percent of annual supply
- Sufficient groundwater supply for current needs
- A potential resource gap has been identified
 - **30,000** acre feet annually
- Solutions to address the gap
 - 16,000 Storm Water Capture
 - 4,000 Recycled Water
 - 10,000 Increased Conservation
- Opportunities to monetize excess water rights

Considered and Approved

- RPU Board, August 1, 2014
- City Council, October 28, 2014
- 1. Riverside recognizes its important role as **stewards** managing a **publicly owned resource** for the benefit of a diverse community of agricultural, commercial, institutional and residential stakeholders

2. Riverside will plan water supply projects to **minimize** its operational **reliance on imported water** and insulate the community from external pressures faced by other communities dependent on the Bay-Delta water conveyance facilities while appropriately advocating for a viable state water supply system

- 3. Riverside will strive to **annually exercise** its maximum allowable groundwater production and **export rights** under the 1969 Western Judgment
 - To exercise its rights, Riverside will preferentially produce water at the lowest cost, while ensuring acceptable water quality, best practices for basin management and compliance with agreements, judgments and other restrictions

- 4. Riverside recognizes the critical role that **conjunctive management of** surface, recycled and groundwater supplies play in the protection, reliability and sustainability of local, regional and statewide water supplies for water users and the environment
 - In recognizing such, Riverside will work cooperatively with regional and wholesale water agencies to purchase and "bank" **imported water** when economically and physically feasible
 - Riverside will continually evaluate the economic feasibility of using imported water to extend recycled water supplies when used for groundwater recharge

5. Riverside will strive to appropriately **monetize unused and potentially** expiring local water production and export rights through pre-planned and pre-executed water sales agreements

6. Riverside will **ensure water supply** availability for its customers through appropriate and economically balanced local and imported water supplies, conservation and water use efficiency, and demand management measures

Supply Versus Demand

RPU Future Water Supply

RiversidePublicUtilities.com 199

Storm Water Capture

Recycling 4,000 AFY

Water Use Efficiency

\$60,000,000

Tier 2: Next ¹/₂ of New Water Supply Projects

Tier 2: \$74-93 Million

Tier 3: \$102-124 Million

Includes various water conservation programs, **Recycled Water Phase B, RNASR (Rubber Dam)** retention basins to storm water capture.

offsite storage and conversion of two storm water

\$50,000,000

\$60,000,000

Includes Active Recharge program, conversion of

\$50,000,000

\$60,000,000

Summary of Investment Options

Water Supply

Additional financial investment is required to secure additional water supplies ullet

RiversidePublicUtilities.com

Resource Costs

Sample Short-Term Recommendations – Year 1

Storm Water Capture	 Continue processing RNASR (Rubber Dam) EIR and requise Continue development of Seven Oaks Dam Enhanced Red
Recycled Water	 Design, permit and begin construction of Recycled Wa alignment
Conservation	 Increase participation in Waterwise landscaping Continue other ongoing water conservation projects

RiversidePublicUtilities.com

site permits charge

ater – Jackson Street

Sample Mid-Term Recommendations – Years 2-5

Storm Water Capture	 Complete RNASR (Rubber Dam) project, onsite facilities Complete Seven Oaks Dam Enhanced Recharge
Recycled Water	 Complete Recycled Water – Jackson Street alignment
Conservation	 Continue water conservation programs

RiversidePublicUtilities.com

Sample Long-Term Recommendations – Years 6-10

Storm Water Capture	 Complete RNASR (Rubber Dam) offsite facilities Participate in additional storm water capture project opportunities arise 		
Recycled Water	 Expand Recycled Water System - Arlanza area 		
Conservation	 Continue Water Conservation projects 		

RiversidePublicUtilities.com

cts as needs and/or

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY BACKGROUND

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

WATER RIGHTS SUMMARY BY BASIN

Extraction/Export Rights

11,351 AFY Export

16,880 AFY Extraction

Basin Characteristics

Groundwater Basin	Surface Area (acres)	Storage Capacity (acre-ft)	Depth to Bedrock (ft)	Estimated Safe Yield (acre-ft/yr)	Safe Yield % of Storage Capacity
Bunker Hill	89,600 ^C	5,976,000 ^C	> 1,200 ^B	232,100 ^A	4%
Rialto-Colton	30,000 ^C	2,517,000 ^C	> 1,000	17,675	1%
Riverside	39,680	1,646,000	400 to 700	62,300 ^D	4%
Total	159,280	10,139,000			

A) Western-San Bernardino Judgment

B) USGS Open-File Report 2005-1278

C) DWR bulletin 118

D) Riverside-Arlington Groundwater Flow Model

RiversidePublicUtilities.com

Bunker Hill Water Levels
Bunker Hill Water Levels

Levels trended upward from 2008 to 2013, during a time of below average hydrology

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY ASSESSMENT

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Supply Versus Demand

Supply Versus Demand

Supply Versus Demand

RPU Future Water Supply

RiversidePublicUtilities.com 224

Storm Water Capture

Recycling 4,000 AFY

Water Use Efficiency

Storm Water Capture

- Slow down or retain storm water to allow for recharge
 - Dams
 - Diversion structures
 - Basins
 - Sand and gravel beds
 - "Recoverable"

Storm Water Capture, 53% of Future Supply

• Large Scale

- Riverside North ASR (Rubber Dam Project) 3,500 af

- Seven Oaks Dam (Enhanced Recharge Project) 3,000 afy
- Active Recharge Project 2,000 afy

• Mid Scale

- Conjunctive use of storm water basins
 2,500 afy
- Small Scale
 - Urban projects 400 afy

3,500 afy and 4,600 afy

POTENTIAL LARGE-SCALE STORM WATER **CAPTURE PROJECT**

RIVERSIDE NORTH ASR PROJECT

Created: November 2014 By: Riverside Public Utilities Water Resources

Seven Oaks Dam

POTENTIAL LARGE SCALE STORMWATER CAPTURE

ENHANCED RECHARGE PROJECT (SEVEN OAKS PHASE 2)

Existing Spreading Basins

Proposed Spreading Basins

Water Resources

POTENTIAL MID-SCALE STORM WATER CAPTURE PROJECT

110

ACTIVE RECHARGE

WATER LENERGY LIFE

By: Public Utilities Water Resources

III Creek

Small Scale Projects

RPU Future Water Supply

RiversidePublicUtilities.com 235

Storm Water Capture

Recycling 4,000 AFY

Water Use Efficiency

Recycled Water, 13% of new Supply

- Began considering in 1991
 - Multiple configurations
- 4,000 afa
- Small customer base
- Reliable

Recycled Water – Lowered Estimates

Current yield available ≈ 7,500 AFY

RiversidePublicUtilities.com

RW Project Environmental 1969 Judgment Plant Use JCSD

Water Conservation, 33% of Future Supply

- Already gaining benefits of conservation
 - Existing programs
 - Turf removal
 - Culture shift
- Approximately 35% of all water is used indoors
 - 10% during winter months
 - 40% during summer months

Water Demand by End User

- Single Family Residential
- Multi Family Residential
- Commercial/Institutional
- Landscape Irrigation
- Industrial
- Agricultural Irrigation

Water Conservation Measures

Measure	Annual Water Savings (AF)	Unit Cost (\$/AF saved)
SFR Surveys (5%)	500	\$356
Precision Nozzles	1,000	\$264
Toilet Rebates	400	\$485
Irrigation Surveys (large landscapes)	800	\$434
CII Surveys & Controllers (5%)	900	\$187
CII Precision Nozzles	300	\$265
CII Clothes Washer Rebates	200	\$158
CII Toilet Installs	300	\$347
System Efficiency	1,000	No Change
SFR Surveys (5-10%)	300	\$630
SFR Clothes Washer	300	\$575
CII Surveys & Controllers (5%)	300	\$801
CII Performance Based Program	700	\$782
	7,000	\$350 (weighted)

A lot of little things add up!

Resource Costs

Water Supply Assessment

- Demand Uncertainty
- Current supply adequate for current need
- Projects identified for future needs
 Consider projects that cost less than imported water
- New projects increase reliability
- \$102-\$124 Million
 - Cost sharing and Grants
 - Reduce risk by monetizing excess water supplies

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT – SUPPLY OPTIONS

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

\$60,000,000

Tier 2: Next ¹/₂ of New Water Supply Projects

retention basins to storm water capture.

offsite storage and conversion of two storm water

\$50,000,000

\$60,000,000

Tier 3: Last 10% of New Water Supply

Includes Active Recharge program, conversion of

\$50,000,000

\$60,000,000

Summary of Investment Options

Water Supply

Additional financial investment is required to secure additional water supplies ullet

RiversidePublicUtilities.com

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – WATER SUPPLY

WORKFORC

INFRASTRUCTURE IMPROVEMENT - SUPPLY RECOMMENDATIONS

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES
Sample Short-Term Recommendations – Year 1

Storm Water Capture	 Continue processing RNASR (Rubber Dam) EIR and requise Continue development of Seven Oaks Dam Enhanced Red
Recycled Water	 Design, permit and begin construction of Recycled Wa alignment
Conservation	 Increase participation in Waterwise landscaping Continue other ongoing water conservation projects

RiversidePublicUtilities.com

site permits charge

ater – Jackson Street

Sample Mid-Term Recommendations – Years 2-5

Storm Water Capture	 Complete RNASR (Rubber Dam) project, onsite facilities Complete Seven Oaks Dam Enhanced Recharge
Recycled Water	 Complete Recycled Water – Jackson Street alignment
Conservation	 Continue water conservation programs

Sample Long-Term Recommendations – Years 6-10

Storm Water Capture	 Complete RNASR (Rubber Dam) offsite facilities Participate in additional storm water capture project opportunities arise
Recycled Water	 Expand Recycled Water System - Arlanza area
Conservation	 Continue Water Conservation projects

RiversidePublicUtilities.com

cts as needs and/or

Options & Recommendations Decided from Feedback

Next Steps

- Incorporate Comments
- Formulate Detailed recommendations
- Review
- **Report Back**

FEEDBACK

INFRASTRUCTURE IMPROVEMENT

RIVERSIDE PUBLIC UTILITIES

WATER | ENERGY | LIFE PUBLIC UTILITIES

ROAD MAPS – THRIVING FINANCIALLY

Critical Areas Summary Rates

- Comparisons how me measure up
- History
- Ratemaking Principles
- Design
- Impacts/Issues
- Rate Structure next steps

Financial & Reserve Policies Overview Debt

10 Year Pro Forma

- Investment Options (Roadmaps)
- Pro forma Examples

Other Finance Items

ROAD MAPS – INFRASTRUCTURE IMPROVEMENT – THRIVING FINANCIALLY – MISSION/GOALS

THRIVING FINANCIALLY

This roadmap supports the changes that are needed for our infrastructure and workforce to reach Utility 2.0.

- Creating a planning tool/model
- Establishing key financial components and targets
- Assessing issues and impacts to rates, reserve levels and bond coverage ratios
- Developing options/alternatives for future pricing models

	WAT	ER	INF
			ΙΝΤ
V	VORKF	OR	CE
RPS	POWI	ER I	MPL
INTEGR	ATED I	POV	VER
I	ELECTR	RIC	INF
	TRANS	SMIS	SIO

CONSERVATION AND EFFICIENCY

FINANCIAL PRO FORMA - 10 YR

THE PLANS

RECYCLED WATER

RASTRUCTURE

EGRATED WATER

DEVELOPMENT

FACILITIES PLAN

EMENTATION

RESOURCES

FIBER BUSINESS

TECHNOLOGY

RPU Initiatives - Four Critical Areas

Replace **Aging Water and** Electric Infrastructure while balancing cost impacts.

Develop our Workforce such that it addresses the need for changing skill sets.

Utilize Advanced Technology

in all areas of out business to provide more efficient and better customer service, both behind and in front of the meter.

Thrive Financially by ensuring costs are recovered and develop a new business model to adapt for the future.

RiversidePublicUtilities.com

ROAD MAPS – THRIVING FINANCIALLY

WORKFORC

THRIVING FINANCIALLY RATES

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

RPU Current Rates

Rate Type	Elec	ctric	Wat	er
	Residential	Other	Residential	Other
Residential / Domestic	X		X	
Domestic Time of Use	X			
Commercial / Industrial / Contract		X		X
Economic Development / Business Retention / Temporary Economic Development		X		
Net Energy Metering	X	X		
Feed-In Tariff		X		
Street / Outdoor Lighting		X		
Agricultural & Pumping / Wind Machines		X		
Stand-By-Service		X		
Traffic Control Service		X		
Irrigation / Grove Preservation			Х	Х
Riverside Water Company Irrigators / Greenbelt Irrigation				X
Special Landscape				X
Fire Protection / Fire Hydrants / Temporary Service				X
Recycled Water				Х

Electric – Rate Comparison

AVERAGE RESIDENTIAL RATE FOR 750 KWH PER MONTH (AS OF Aug. 31, 2014)

* Rate increase subsequent to comparison

RiversidePublicUtilities.com

WATER ENERG Y LIFE

Water – Rate Comparison

AVERAGE RESIDENTIAL RATE FOR 25 CCF PER MONTH (AS OF SEPT. 30, 2014)

* Rate increase or drought rates implemented subsequent to comparison

Electric Rate Increases - Last 20 Years

RiversidePublicUtilities.com

Water Rate Increases - Last 20 Years

Overall System

RiversidePublicUtilities.com

What projects that Electric Rate Plans supported in the last 20 Years

19	95 1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	Percentage of Rate Increase											1	1	1	1
			2.85%					3.4%	3.1%	2.2%		3.5%	10.0%	3.6%	5.8%
	State Mandated Public Benefits Charge							3 Ye	ear Rate P	lan			4 Year R	ate Plan	
					•	SON Expa Und	GS Caj Inded ergrou	oital In Overh Ind Co	nprove ead / nversie	ement on		•	RERO SON Repl	C 1, 2, GS Ste aceme	3 & 4 am G ent
	Prior I SON Imp Spri Plar	•	 Cable & Structure Replacement Program Substation Bus & Upgrades Substation Power Transformers Major Feeders 						 RTRP/STP Clearwater Meter Replacer CIS Replacemer Replacing low c 						
	• Irar	ISMISSI	on Line		•	iviajo	r 4/1.		nversi	on					

RiversidePublicUtilities.com

ienerator

nent Program ost power contracts

What project that Water Rate Plans supported in the last 20 Years

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	
	Percentage of Rate Increase													I	1		
	2.00%	11.50%		8.50%			2.4%	4.0%	3.9%	8.5%	8.5%	8.5%	12.0%	10.0%	10.0%	10.0%	
	Water Rate Increase	Water Rate Increase		Water Rate Increase			3 Ye	ear Rate F	Plan	3 Year R Conser	ate Plan a vation Su	& Water rcharge	5 Year Rate Plan				
															• E:	xpan	
	• Exp Rep	anded lacem	Main ent		• Ex	pande	d Maii	า					- •		 S¹ Ti 	treet ransn	
	• Tild	en Re	servoi	r	 Re Tra Water 	placer ansmis ater Si	nent sion N Ipervis	/lains		 Expanded Main Replacement Waterman Pipeline 					 Fa P W 	acility ump Vhite	
	• Exp	anded	Main		Co Ac	ntrol a quisiti	on (SC	ita (ADA)		F • [Replac Mockir	ement ngbird	Canyo	on	• E ¹	vans even	
Replacement System									L	Juni							

RiversidePublicUtilities.com

ded Main Replacement orth

- Improvements
- nission Mains
- y Rehab.
- **Station Replacements**
- gates I & II Reservoirs
- Reservoir
- Oaks Dam

- 1) Provide Adequate Revenue
 - Collect sufficient revenues to fund:
 - Current O&M & capital expenditures
 - Future infrastructure needs
 - Reserves
 - Provide revenue stability for efficient operations
 - Provide year-to-year consistency for customers
 - Gradual increases in rates
 - Advance notice of rate increase

2) Consider Equity

- Reflect cost of service
- Unbundle components of the revenue requirement
 - energy/production, transmission, distribution, etc.
- Align:
 - fixed revenue covers fixed costs
 - variable revenue covers variable costs
- Customer classes are treated fairly and equitably

- 3) Send Appropriate Price Signals to Customers
 - Simple to understand & administer
 - Sophisticated enough to promote certain customer behavior
 - Tiered rates to discourage waste
 - Summer and winter seasonal tiers to reflect costs
 - Time of Use when applicable
 - Unbundle fixed and variable costs to encourage customer adoption of conservation, efficiency, and distributed generation while preventing subsidies

- 4) Reflect Community's Social Priorities
 - Public Benefits Surcharge
 - Low income assistance, energy efficiency rebate program, solar rebates
 - Water Conservation Charge
 - Rebates for conservation and water use efficiency
 - Commercial economic development incentives
- 5) Strive to be Competitive
 - Lower than rates of equivalent customer classes in neighboring communities

What goes into Rate Design?

- Power Supply Costs Electric
- Supply/Distribution Costs Water
- Personnel Costs/Workforce Development
- Other Operating and Maintenance
- Additional Operating and Maintenance for **Capital Improvement Program & Advanced** Technology
- **Debt Service Requirement**
- General Fund Transfer

RiversidePublicUtilities.com

Revenue Requirement (Expenses)

Key Issues Affecting Rates

Electric & Water:

- Fixed vs. Variable Revenues & Expenses
- **Conservation & Efficiency**

Electric:

- Distributed Generation Solar PV Water:
- Mandatory Drought Restrictions

Financial Security Fixed/Variable Balance

RiversidePublicUtilities.com

Variable Cost

Fixed Cost

Electric Fixed vs. Variable Revenues and Expenses

RiversidePublicUtilities.com

Water Fixed vs. Variable Revenues and Expenses

RiversidePublicUtilities.com

How RPU Loses Revenues

How rooftop solar and energy efficiency can impact revenue

How revenue is lost due to Mandatory Drought Restrictions (current rates)

28% decrease for entire FY 2016 results in \$9 M loss of Revenue

RiversidePublicUtilities.com

r												
	,	W A	ТЕ	R	E	NI	ER	GΥ	1	LI	FE	
			\$								T	
		1	1	Τ							_	
		1		7			2	5	2	2	1	
		RI	ΫE	RS	ID	E						
		ΡU	B	LI	С	U	Т	IL	II	Ι	ΕS	

Rate Structures- Next Steps

- Complete Water and Electric Cost of Service Analysis and Unbundle Revenue Requirement
- Provide Proposed Ratemaking Principles to Board for Feedback
- **Develop Rate Structures and Multi-year Rate Plans**
- Board Rate Plan Workshops January/February 2016

RiversidePublicUtilities.com

ROAD MAPS – THRIVING FINANCIALLY

WORKFORC

THRIVING FINANCIALLY FINANCIAL & RESERVES POLICIES

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Goals of Financial Policies

- To mitigate risk
 - Rate / Revenue instability
 - Emergency with asset failure
 - Volatility in working capital
- To achieve/maintain a certain credit rating
- To determine most opportune time to issue debt

RiversidePublicUtilities.com

Importance of Financial Policies

- To maintain financial solvency
 - Provide a basis for coping with fiscal emergencies (revenue short-falls, asset failure, emergency, etc.)
- To provide guidelines for sound financial management with an overall long-range perspective
- To enhance financial management transparency
 - Improve public's confidence and elected officials' credibility

Why Do We Need Reserves?

- Nature of municipal utility system
 - Capital intensive
 - Highly fluctuating capital costs
 - Risk and liability \rightarrow unknown liability costs
- Healthy reserve level \rightarrow better credit ratings \rightarrow lower interest rates for future debt

Current RPU Reserve Policy

- Approved by City Council in June 2001
 - Minimum Reserves At least 3 months operating expenses
 - Maximum Reserves One year of operating revenues
 - Reserve levels reviewed annually.
- In 2003 City Council approved establishing Electric Fund internally restricted reserves: Operating, Regulatory Risk, Energy **Risk Management**
- In 2005 Board of Public Utilities discussed reserving proceeds from sale of property to future purchases of property or other long-term capital assets.

Unrestricted Reserve Balance

Reserve Maximum (100% Annual Operating Revenues)

Reserve Policy – Best Practices

- Mitigate Risk Risk Assessment
 - Predictable, unpredictable and unknown
- Risk mitigation is very entity specific
- Identify specific reserve types/needs
 - Working capital
 - Capital improvements
 - N-1 contingency
 - Emergency

- Rate stabilization
- Asset / liability balances
- Market risk
- Regulatory risk
- Determine and set minimum reserve level

Evaluation Process for New Reserve Policy – Minimum Reserves

Risk Mitigation Evaluation	Туре
Time lag between when operating expenses are incurred and revenues are received	Opera Resei
Power resource cost uncertainty: Variation from load forecast; Uncertainties in transmission costs and resource adequacy; Fluctuation in market prices	Powe
Unexpected significant decreases in sales or increases in operating costs (drought restriction, new regulatory mandates, etc.)	Rate
Aging capital assets and infrastructure (Springs, RERC, Clearwater, technology, utility vehicles, substations, etc.)	Capit Refur
Emergency capital needs and catastrophic events	Capit Resei
Carbon emissions, Water quality standards, Renewable standards, other regulatory mandates	Regu

of Reserves

ating and Maintenance rve

er Supply Reserve

Stabilization

al Replacement and rbishment

al and Emergency rve

latory Reserve

ROAD MAPS – THRIVING FINANCIALLY

WORKFORC

THRIVING FINANCIALLY DEBT

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

20 Year History Electric Fund Debt

	FY 1995	FY 2001	FY 2008	FY 2014
Fixed	\$ 192.6 M	\$ 198.6 M	\$ 346.0 M	\$ 443.1 M
Variable	-	-	\$ 199.1 M	\$ 154.4 M

RiversidePublicUtilities.com

Fixed Variable

\$280M to fund 268MW in new local generation – Increased Reliability!

RIVERSIDE ENERGY RESOURCE CENTER (RERC)

A power generation plant on 16 acres, located on Acorn Street. The 192MW gas-fired power generation plant to be used to offset power shortages during peak demand.

There are four 48MW units, two came on line in 2006, and two more in 2011.

Total project cost: \$113 million financed by issuing revenue bonds to be paid back over 25 years.

SPRINGS GENERATION PLANT

A power generation plant located in Riverside, that came on line in 2002, providing 36MW of power to be used during times when peak energy is needed, most typically the hottest days of each summer.

and and a second second

CLEARWATER CO-GENERATION PLANT

A power generation plant purchased from Corona, California that provides 38MW of gas-fired power used to offset power shortages during peak demand.

20 Year History Water Fund Debt

	FY 1995	FY 2001	FY 2008	FY 2014
Fixed	\$ 68.7 M	\$ 66.1 M	\$ 93.1 M	\$ 147.2 M
Variable	-	-	\$ 60.3 M	\$ 56.5 M

RiversidePublicUtilities.com

Fixed Variable

Water Independent!

\$118M to fund

- 62 miles of new pipeline
- Improved Evans reservoir to ensure reliability
- Added 8 million gallons of reservoir capacity
- Increase potable water supply

EVAN'S RESERVOIR REPLACEMENT

A cast-in-place reinforced concrete reservoir with 16 million gallon capacity. Originally built in 1968 and was designated for replacement after seismic vulnerabilities were determined through engineering studies. Before replacement the reservoir was operated at lower water levels to reduce likelihood of structural failure during an earthquake.

Total Project Cost: \$25 million

CAP. 9-TON

J.W. NORTH TREATMENT PLANT

Total Project Cost:

\$24 million (50% grant funded)

WATER SYSTEM - WATER SUPPLY MAINS

TRANSMISSION PIPELINES

DISTRIBUTION PIPELINES

Miles of pipeline:	954
Miles of canal:	14
Number of fire hydrants:	7,754

Total System Value:

\$1.562 billion

ROAD MAPS – THRIVING FINANCIALLY

WORKFORC

THRIVING FINANCIALLY 10 YEAR PRO FORMA

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

New 10 Year Pro-forma

RiversidePublicUtilities.com

How we use the Pro Forma

- Provide Infrastructure and Supply Options for Planning and **Decision Making**
- Evaluate Impact of Options
 - Potential Rate Increase
 - Potential Debt Issuance
 - Projected Use of Reserves
 - Projected Financial Ratios (Days Cash / Debt Service Coverage)
- Incorporate Directions from City Council and Board

RiversidePublicUtilities.com

Electric Infrastructure Investment Options

Additional financial investment is required to address current backlog and improve maintenance.

RiversidePublicUtilities.com

Highly Proactive

↓ ↑

\$519 - 623 million

Water Infrastructure Summary of Investment Options

Additional financial investment is required to address current backlog and improve maintenance.

RiversidePublicUtilities.com

Option 4

Aggressive Program

$\mathbf{1}\mathbf{1}$

\$342-437 million

Water Supply **Summary of Investment Options**

Water Supply

Additional financial investment is required to secure additional water supplies \bullet

RiversidePublicUtilities.com

Pro-forma Results Example **Current Rate Plan**

Pro-forma Results Example **Updated Rate Plan**

Pro-forma and Policies - Next Steps

- Incorporate City Council/Board Directions on Roadmaps into 10 Year Pro-forma
- Update Financial Policies to Current Best **Practices**

RiversidePublicUtilities.com

ROAD MAPS – THRIVING FINANCIALLY

WORKFORC

OTHER FINANCE RELATED ITEMS COMING

THRIVING

ADVANCED

FINANCIALLY

TECHNOLOGIES

Baker Tilly Examination and Performance Audit

 Examination of Northside Properties, Financial Policies, Cost Allocation. Report to Board/CC (August – December 2015)

Hometown Connections Operational Audit

 Interviews with key utility personnel addressing various operational areas. Report to Board/CC (August – December 2015)

CMO Office – Deep Dive Financial & Performance Audit

• TBD – August 11th City Council Meeting (Audits will commence Jan. 2016)

RiversidePublicUtilities.com

City Council Workshop - RPU Finance 101

- September 1, 2015
- Topics to include:
 - Financial Policy Outline
 - Rates/Reserves
 - History of Rate Plans what did we get?
 - What is currently impacting rates?
 - Risk Quantification for Reserves
 - Debt
 - Financial Planning

RiversidePublicUtilities.com

Future Outcomes

Thrive Financially

by ensuring costs are recovered and develop a new business model to adapt for the future.

- Cost recovery through rate structure and rate plans
- More robust financial and reserve policies
- Targeted use of reserves and debt
- Accountability through audits
- More frequent communication of financial performance

RiversidePublicUtilities.com

FEEDBACK

INFRASTRUCTURE IMPROVEMENT

WRAP UP & NEXT STEPS

INFRASTRUCTURE IMPROVEMENT

RIVERSIDE PUBLIC UTILITIES - PLANNING DATELINE

WORKING THE PLAN

Q4 - 2015

October 2015 Fiber Optic Plan Northside Audit Transactions to Board and Council

Oct.-Dec. 2015

Roadmap Feedback Fiscal Policies Audit Organizational Review Thriving Financially to Board and Council

Q1 - 2016

Jan.-Mar. 2016

Draft Financial Plan (5 year forecast) Performance Audit (next phase) Detailed Finance Audit to Board and Council

City Council Board of Public Utilities

Joint Meeting Council Board Reports to Board And Council