Overview of Utility Financial Operations for Boards and Councils

Presentation by Utility Financial Solutions, LLC

Dawn Lund Vice-President Utility Financial Solutions dlund@ufsweb.com

Utility Financial Solutions, LLC

- International consulting firm providing cost of service and financial plans and services to utilities across the country, Canada, Guam and the Caribbean
- Instructors for cost of service and financial planning for APPA, speakers for organizations across the country, including AWWA.

Objectives

- Basic understanding of cost structure and its impact on rates
- What information does a cost of service study provide and how is it used
- Current rate design trends
- How rate designs are changing to reflect future industry trends

3

Overview of the Rate Setting Process

Why is Cost of Service Important?

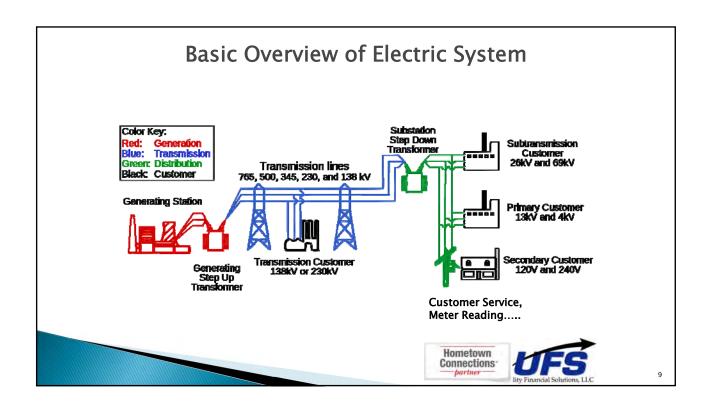
- Cost of service is:
 - A method to equitably allocate the revenue requirements of the utility among the various customer classes of service
 - What revenues should I recoup from whom and how should I do it?

5

Three Important Objectives of COS

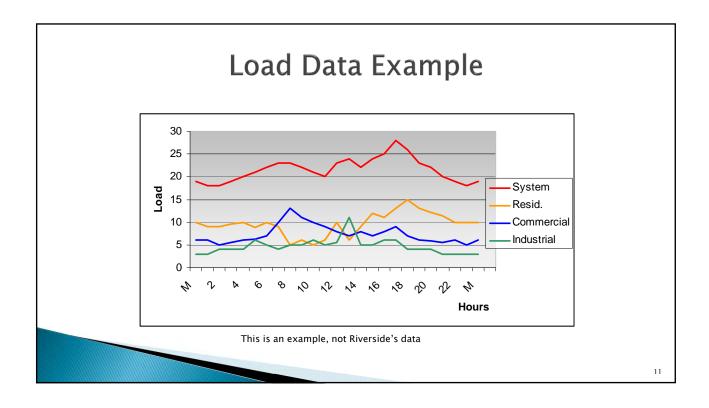
- ONE: Ensure rates recover costs to provide service to customers (Revenue Requirements)
- Objective Two: Defines optimal rate structure
 - Customer Charge
 - kWh Charge
 - Demand Charge
 - Power Cost Adjustment
- Objective Three: Reduce cross between classes

Cost of Service and Customer Classes



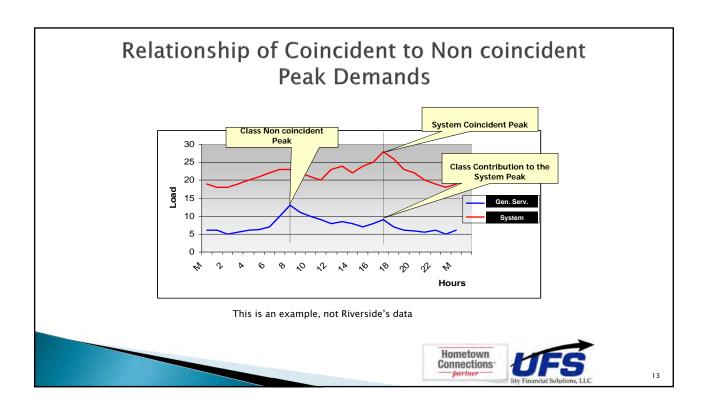
Why Costs Vary by Customer Class

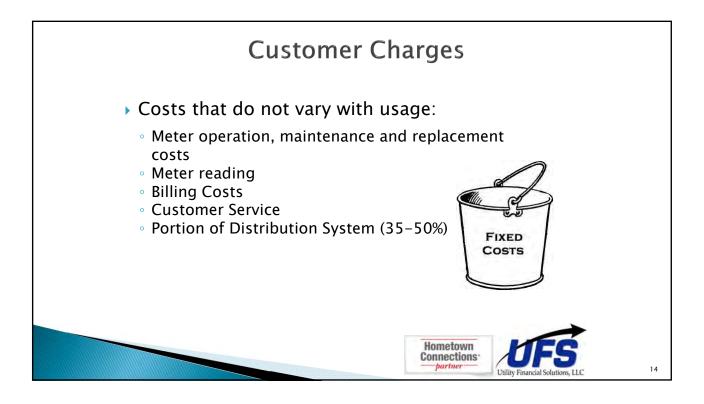
- Costs vary because customers use electricity differently – grouped according to similar usage
 - Residential, Commercial, Industrial
- Delivery of electricity consists of mainly four components:
 - Power Supply
 - Local Production
 - Purchases
 - Transmission
 - Distribution System
 - Customer Specific Costs

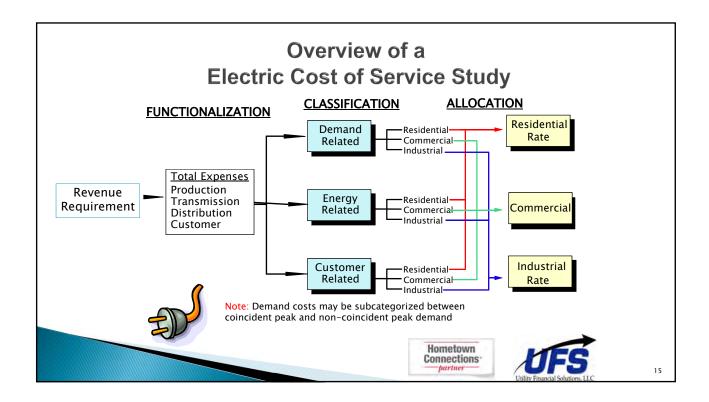


Power Supply Costs by Class of Customer

- Demand related power costs
 - Some customers contribute a greater amount to the peak demands of the system
- Energy related power costs
 - Power costs can vary by season or time
 - Some customers use more energy during on-peak hours




Distribution Costs


- Identifies the cost to operate and maintain the distribution infrastructure
- Customers are served at different voltage levels:
 - Sub transmission Customer avoids all the distribution system infrastructure
 - Primary Voltage Customer owns transformer and service drop
 - Secondary Voltage Uses all the infrastructure of the distribution system

COS and Rate Subsidization

Cost of Service Summary

		Projected	Change to
Customer Class	Cost of Service	Revenues	Meet COS
Residential Service Rate A	3,310,810	3,048,700	9%
General Secondary Service - Rate B	2,189,888	1,973,674	11%
Street Lighting	120,840	106,000	14%
Secondary Demand/Energy Service - Rate C	2,613,477	2,632,694	-1%
Primary Demand/Energy Service - Rate D	13,205,053	13,425,300	-2%
Total	21,440,068	21,186,368	1.2%
Revenue Increase Needed		\$ 253,700	

This is an example, not Riverside's data

17

Reduce cross -subsidization between classes

- · Certain rate classes can be subsidizing other rate classes.
 - Example: Industrial class subsidizing the residential and commercial

Subsidization – When an overall increase is needed

- Move toward cost to serve using a bandwidth on customer classes:
 - If trying to achieve an overall 1.2% increase, no class will receive more than 3.2% (1.2+2=3.2) increase, no class less than -0.8% (1.2-2=-0.8) increase.
- This gives the rate design room to move classes closer together without rate shock to any one class

19

Subsidization – When an overall increase is needed

		Projected	Change to	Rate	Revenue
Customer Class	Cost of Service	Revenues	Meet COS	Adjustments	Adjustment
Residential Service Rate A	3,310,810	3,048,700	9%	3.2%	\$ 97,558
General Secondary Service - Rate B	2,189,888	1,973,674	11%	3.2%	63,158
Street Lighting	120,840	106,000	14%	3.2%	3,392
Secondary Demand/Energy Service - Rate C	2,613,477	2,632,694	-1%	0.8%	21,062
Primary Demand/Energy Service - Rate D	13,205,053	13,425,300	-2%	0.5%	67,127
Total	21,440,068	21,186,368	1.2%	1.2%	\$ 252,296
Revenue Increase Needed		\$ 253,700			

This is an example, not Riverside's data

20

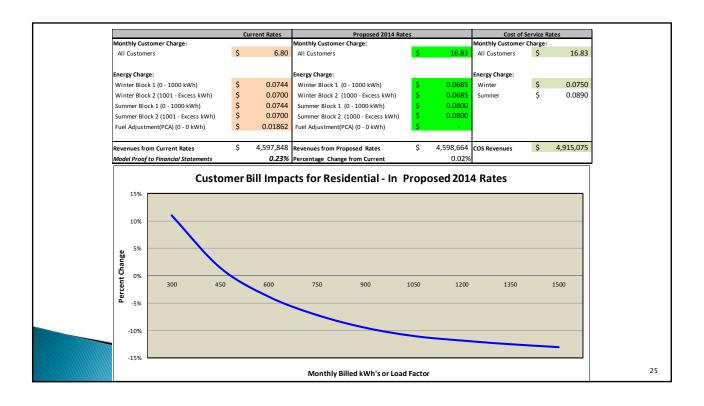
Rate structure far from COS?

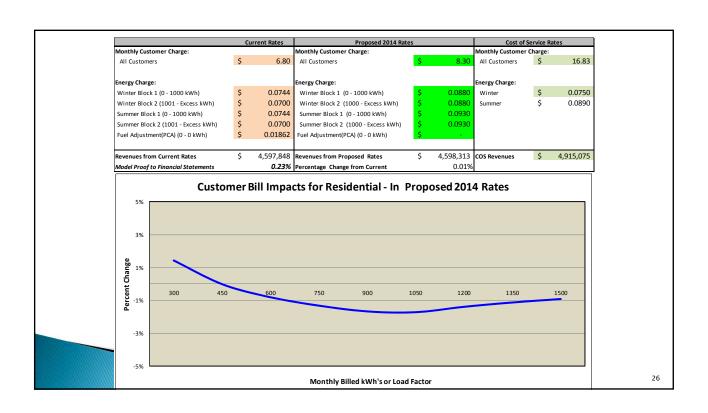
Customer Charges

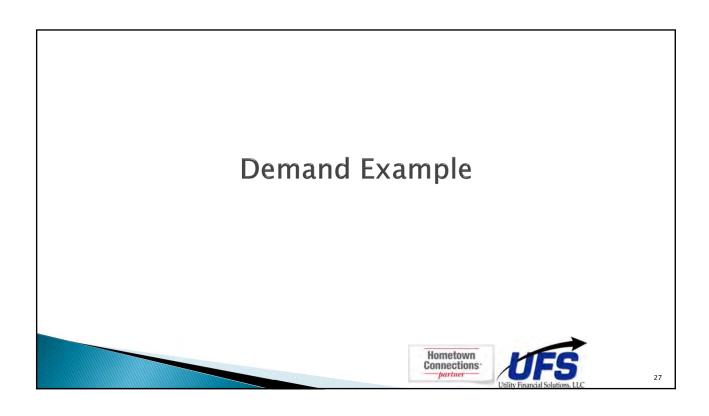
- Increasing customer charges helps stabilize revenues
 Declining sales
- Reduces subsidy between year-round customers and seasonal customers
- Low income not the same as low use
 - At most utilities, low income customers tend to be higher than average users. A higher customer charge may benefit low income depending on housing mix (Have to check demographics at your specific utility)

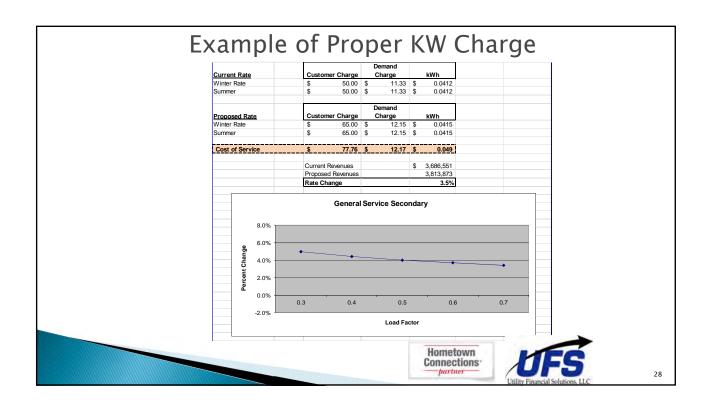
Correction of Customer Charges

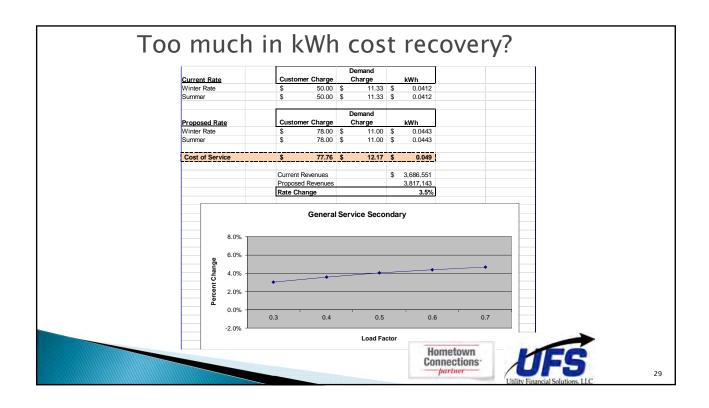
- Correct during rate changes
- Revenue neutral rate adjustment when increases are not Stick PLAN required
 - Customer charge increased
 - Energy charge decreased
- Set a plan to move in increments over time
- Look at impact by usage and dollar




COS Results


Customer Class	Current Customer Charge		COS Customer Charge		Difference	
Residential	\$	6.80	\$	16.83	\$	10.03
General Service		10.80		84.80	\$	74.00
Large Power		50.00		154.51	\$	104.51





Distribution Recovery

- For demand rate customers, most inaccurate method of distribution cost recovery is through a kWh charge
- Distribution system is constructed to handle a customers peak demand or a classes peak demands and are not constructed to handle kWh's
 - Typically billed on peak monthly demand

Example of Distribution Recovery Using kWh's and KW

Method of Distribution R	Recovery				
Demand Rate	\$ 5.90				
kWh Charge	0.0223				
Load Factor	20.0%	30.0%	40.0%	50.0%	60.0%
Peak Demand	1,000	1,000	1,000	1,000	1,000
kWh's Used by Customer	146,000	219,000	292,000	365,000	438,000
Demand Rate	5,899	5,899	5,899	5,899	5,899
Energy Rate	3,259	4,888	6,517	8,147	9,776
	·				·
Difference	(2,640)	(1,011)	619	2,248	3,877

- For this example, recovery on kWh and kW would produce the same cost recovery
- The example customers all create the same demand on the distribution infrastructure
- The kWh method produced a subsidy for low load factor customers from high load factor customers

Hometown Connections

31

Rate Design

Proper Rate Design

- Proper Rate structure = Fixed and Variable costs
- Customer charge Recover fixed costs of meter reading, billing, customer service, and a portion of maintenance and operations of the distribution system
- Demand charge -
 - Demand component of power supply
 - Distribution component
- KWh In general, variable portion of power supply
- PCA Pass through for changes in power supply

33

Current Designs Simplified Example

	onthly harge	First 500 kWh		Over 500 kWh	
Flat	\$ 10.00	\$	0.08	\$	0.08
Declining	10.00		0.09		0.07
Inclining	10.00		0.07		0.09

Hometown Connections partner

Current Rate Structures

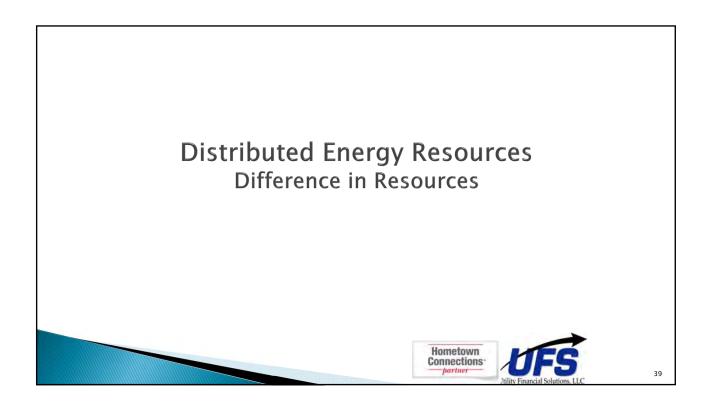
- Flat Rate Structures Easy to understand and administer
- Declining Block Rate Structures Can create the most revenue stability
- Inclining Block Rate Structures -
 - Usually a 25% rate differential in blocks for customers to respond
 - Many Inclining block rate structures shifted to much of the fixed cost recovery into latter blocks adversely impacting utility financial statements
- Time Differentiated Rates

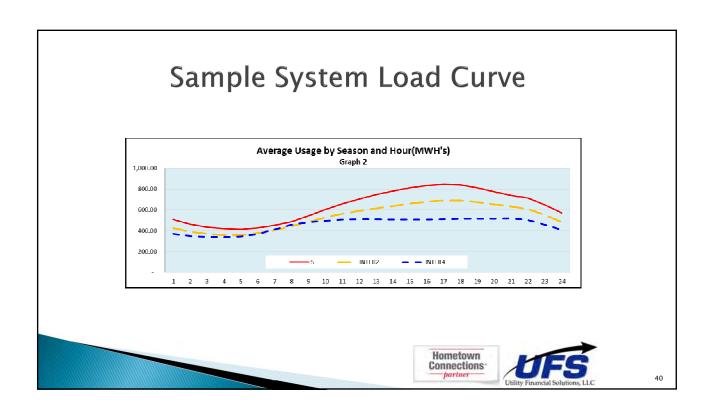
35

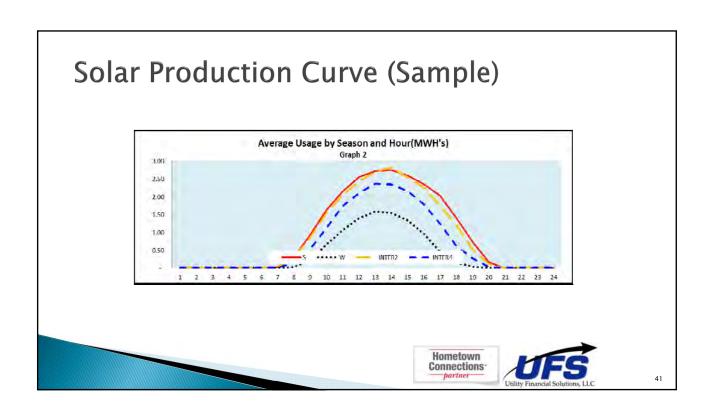
Time and Seasonal Differentiation Rate Design Non-Time Coincident Peak Demand Differentiated Energy Seasonal Winter Winter Summer Summer Differentiated T-0-U Off Peak Off Peak On Peak Time of Use (TOU) Seasonal - On peak Winter - Off peak Summer Hometown Connections

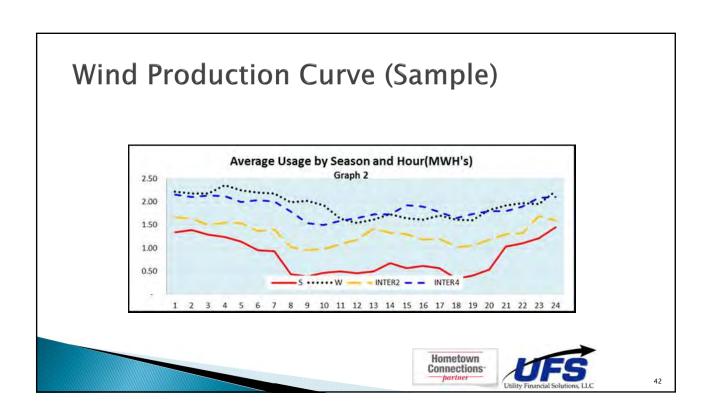
Time and Seasonal Differentiation

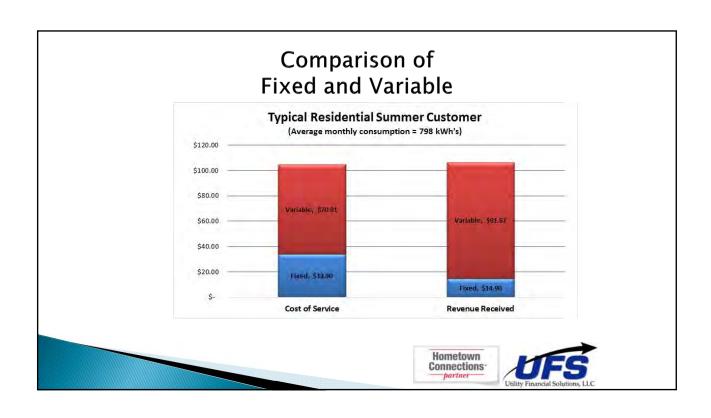
- Advantages
 - More closely tracks costs
 - Gives price signals brackets
- Disadvantages
 - Metering
 - Require more customer attention
 - Cost differential between time periods may not be large enough to off-set administration/billing costs
 - Budget billing can hide price signal for seasonal rates

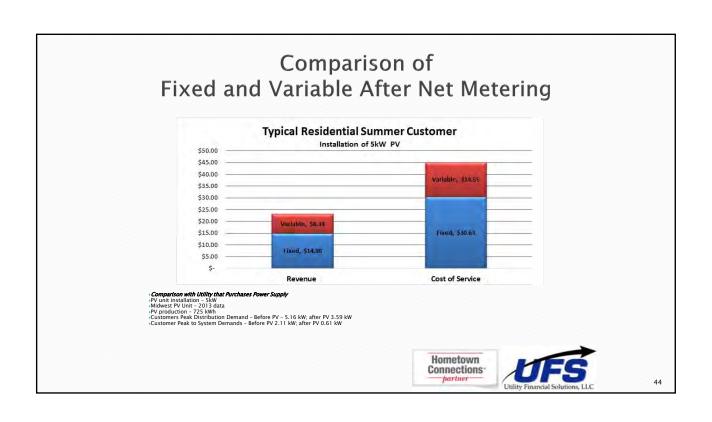





27


Why These Worked Historically


- Greatly generalized, residential customers woke up, took a shower, went to work, came home, turned on the lights, cooked dinner, watched TV, did a load of laundry, went to bed.
- Each customer in the residential class looked an awful lot like the next - utilities could lump energy and demand elements together into \$/kWh price.
- Today residential customers are not the same. Smart thermostats, plug-in electric vehicles, rooftop solar, demand-flexible water heaters, battery energy storage, and myriad of other technologies that make their loads and consumption patterns potentially very different.



Issues with Net Metering

- Whenever subsidies occur, it will cause problems in the future.
 - Customer has relied on the price signal to install the solar unit
 - At some point the subsidy will need to be removed
- Billing and Metering Options (Depends on metering and billing capabilities)
 - Net Metering additional charge
 - Buy All/Sell All
 - Net Billing

45

Billing and Meter Options

- Net metering with additional charge for distribution recovery
 - Difference between what they take off the system and what they give back. (1,000 take, gave 600, billed 400)
 - Additional charge for distribution under recovery
 - Can be negatively viewed by customer, "why am I paying more?"

Billing and Meter Options

- Avoided Cost recovery
 - Measures how solar reduces energy and capacity on power supply side, as well as long run marginal cost on distribution system (reduce need for capacity addition)
- Buy all sell all (two meters)
 - Took 1,000, gave back 600, solar produced 800. (Solar metered separately
 - House used 1,200 (1,000+800-600)
 - Billed retail at 1,200; credited avoided cost at 800
- Net Billing
 - Took 1,000, gave back 600. Billed retail at 1,000 and avoided cost credit at 600.

47

"Ideal" Rate Structure

Example "Ideal" Rate Structure	EXAMPLE Rate	
Power Supply Customers Demand Coincident with System Peak	\$ 12.72	
Distribution Recovery Based on Customers Maximum Demand	2.19	
Energy Charge (Seasonal, TOU)	0.0442	
Customer Charge	21.44	
Transfer to the General Fund	7%	

"Ideal" Rate Strategies

- Add utility of the future Small periodic increases to keep up with inflation
 - 0−5% inflationary
 - ∘ 5-9% a few large industrials
 - Double digits = complaints
- Phase in large increases over time
- When possible, implement Increases in the transition month =Transparent
- Survey of local rates (positive and negative)
 - Structure apple to apples?
 - What kind of rates do they need to not care what customer are doing behind the meter -

49

Questions?

Dawn Lund Vice-President Utility Financial Solutions 231-218-9664