Center Street Commerce Building

Prepared for:
Transition Properties, LP
PO Box 1010
Blue Jay, California 92317

Prepared by:
MIG
500 Iowa Avenue, Suite 110
Riverside, California 92507

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents
Attachment 3-City Planning Commission Report and Exhibits - April 05, 2018

It is reasonable to assume that any blank pages herein were intentionally left as such by the team of professionals preparing this document

Center Street Commerce Building

Health Risk Assessment

June 2016

City of Riverside
1 Executive Summary 1
1.1 Project Description 1
1.2 Risk Assessment 1
2 Introduction 3
3 Environmental Setting 5
4 Regulatory Framework 9
4.1 Air Toxics 9
4.2 Risk Assessment Guidelines 9
5 Exposure Assessment 13
5.1 Facility and Surroundings 13
5.2 Mobile Emissions Sources 13
5.3 Area Dimensions 15
5.4 Air Dispersion Modeling 16
6 Risk Assessment 23
6.1 Cancer Risk 23
6.2 Cancer Risk and Cancer Burden 29
6.3 Non-Cancer Risk 29
6.4 Conclusion 29
7 Index of Acronyms 33
8 Bibliography 35
List of Tables
Table 1 (AB2588 Action Release Levels) 9
Table 2 (Trip Generation) 14
Table 3 (Emissions Factors) 15
Table 4 (Source Locations) 15
Table 5 (Area Dimensions) 16
Table 6 (30 Year (Maximum) Residential Cancer Risk (Discrete Receptors)) 25
Table 7 (70 Years (Lifetime) Population-Wide Cancer Burden) 26
Table 8 (25 Years (Maximum) Worker Cancer Risk (Discrete Receptors)) 28
Table 9 (Cancer and Non-Cancer Risk Summary) 30
List of Exhibits
Exhibit 1 (Regional/Vicinity Map) 7
Exhibit 2 (Radius Map) 17
Exhibit 3 (On-Site Emissions) 19
Exhibit 4 (Off-Site Emissions) 21
Exhibit 5 Community Cancer Burden 31
Appendices
Appendix A EMFAC2014 Results
Appendix B BPIP Results
Appendix C AERMOD Results

[^0]
1.1 Project Description

The project includes the construction of a 308,000 -square-foot warehouse on 15.63 acres. The warehouse includes 110,591 square feet of landscaping, the potential for up to 282 parking stalls, and 47 loading docks. Diesel particulate matter emissions will occur from truck movement along proposed drive aisles, truck movement along local roadways, and from truck idling at loading/unloading docks. The project is located south of Center Street and north of Placentia Lane in the City of Riverside, California, Universal Transverse Mercator coordinates Zone 11 N, 467247 Easting, 3764194 Northing, World Geodetic System 1984.

1.2 Risk Assessment

Discrete and grid receptor cancer risks are detailed in the AERMOD and HARP-RAST output files included in the appendix of this report. No thresholds for cancer or non-cancer risk will be exceeded by the project. The results of the study are summarized below:

Receptor (Exposure Time)	Exposure Level	Threshold	Potentially Significant?
Resident (30 Years) Cancer Risk	0.000002870	0.00001	No
Worker (25 Years) Cancer Risk	0.000001090	0.00001	No
Community Level (70 Years) Cancer Risk	0.002500000	0.50000	No
Non-Cancer Hazard index	0.007120000	1.00000	No

[^1]This health risk assessment includes operations-related emissions estimates of diesel particulate matter from the proposed Center Street Commerce Building. Analysis of the emission projections was conducted by MIG environmental specialists to provide information to a Lead Agency (as defined in the California Environmental Quality Act (CEQA)) in evaluating the project and making a determination of significance. The project includes the construction of a 308,000-square-foot warehouse on 15.63 acres located south of Center Street and north of Placentia Lane in the City of Riverside, California. The project includes 110,591 square feet of landscaping, the potential for up to 282 parking stalls, and 47 loading docks.

This health risk assessment was prepared using guidance found in the South Coast Air Quality Management District (SCAQMD) Health Risk Assessment Guidance for Analyring Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis (SCAQMD, 2003) and the state Office of Environmental Health Hazard Assessment (OEHHA) 2015 Guidance Manual for the Preparation of Health Risk, Assessments (OEHHA, 2015).

The assessment was further informed by the SCAQMD Supplemental Guidelines for Preparing Risk. Assessments for the Air Toxics Hot Spots Information and Assessment Act (SCAQMD, 2015), although it should be noted that the project at this time is not subject to the requirements of the Hot Spots Act and it is not known at this time if any future tenant will be subject to assessment and possible notification requirements pursuant to the Hot Spots Act. Modeling of diesel particulate matter emissions and subsequent health risk evaluation was facilitated through us of the following computer software:

- EMFAC2014
- BPIPPRM (DATED 04274)
- AERMOD v 15181
- HARP2-RAST (HARPCalc v 16088)

This report has been prepared for use by the Lead Agency to assess potential project-related impacts resulting from exhaust emissions containing diesel particulate matter in compliance with the State CEQA Statutes and Guidelines, particularly with respect to the sensitive receptors issues identified in Appendix G of the State CEQA Guidelines. The report preparers do not make or record any determinations of significance in this report. Such determinations are required to be made solely in the purview of the Lead Agency, through independent judgement, pursuant to CEQA.

This report was prepared under the direction of Christopher Brown (Director of Environmental Services) with assistance provided by Cameron Hile (Assistant Analyst) of MIG under contract to Transition Properties, LP.

Christopher Brown
Director of Environmental Services

Cameron Hile
Assistant Analyst

3 Environmental Setting

The project is located in the City of Riverside. The City of Riverside and the broader Inland Empire are defined by a semi-arid, Mediterranean climate with mild winters and warm summers. Annual rainfall averages 9.86 inches with the rainy season occurring during the winter (WRCC, 2009). The coolest month of the year is December with an average monthly low of 41.3° Fahrenheit (F). The warmest month is August with an average monthly high of $94.4^{\circ} \mathrm{F}$. Riverside is located at an elevation of approximately 700 feet to 1,400 feet above mean sea level (AMSL) (USGS, 1942). The project site is located at an approximate elevation of 830 AMSL. Wind generally blows from the west (WRCC, 2002).

Figure 1
Riverside Wind Rose

[^2]

Not to Scale
Exhibit 1 Regional and Vicinity Map
 Development Review Committee - Exhibit 7-CEQA Documents ${ }^{\text {filer sireel, Riverside, Calliomia }}$

4.1 Air Toxics

State requirements specifically address air toxics issues through Assembly Bill (AB) 1807 (known as the Tanner Bill) that established the State air toxics program and the Air Toxics Hot Spots Information and Assessment Act (AB 2588). The air quality regulations developed from these bills have been modified recently to incorporate the Federal regulations associated with the Federal Clean Air Act Amendments of 1990. The Air Toxics Hot Spots Information and Assessment Act (Hot Spots Act) was enacted in September 1987. Under this bill, stationary sources of emissions are required to report the types and quantities of certain substances that their facilities routinely release into the air.

The SCAQMD is required to prepare an annual report on the status and forecast of air toxic botspots pursuant to Section 44363 of the California Health and Safety Code. SCAQMD monitors facilities that are not exempt from the fee and reporting requirements of AB 2588.

Some facilities are covered under umbrella permits that address industry-wide categories. SCAQMD has issued general permits for the following seven activities:

- Retail gasoline dispensing
- Perchloroethylene dry cleaning
- Auto body shops
- Fiberglass molding
- Printing
- Metal plating
- Wood stripping and finishing

Emissions inventories and risk assessment guidelines have been prepared for the seven industry-wide categories. Approximately 1,400 auto body shops, 3,200 gasoline stations, and 1,400 perchloroethylene dry cleaners within the District are covered under these umbrella permits.

Depending on the severity of the facilities' toxic air contaminant (TAC) releases, SCAQMD requires either public notification of toxic hot spots or preparation of a risk reduction plan, as identified in Table 1 (AB2588 Action Release Levels).

Table 1 (AB2588 Action Release Levels)

	Cancer Risk (per million)	Acute Risk	Chronic Risk
Action Risk Level	$>=25$	$>=3.0$	$>=3.0$
Public Notification Level	$>=10$	$>=1.0$	$>=1.0$
Exempt	<1	<0.1	<0.1

It is unknown at this time if future tenants will include use of stationary emergency or prime compression ignition internal combustion engines, portable diesel engines, or other equipment subject to AB 2588 considering it is a speculative building without a known tenant.

4.2 Risk Assessment Guidelines

In order to perform health risk assessments (HRAs) under the Air Toxics Hot Spots Information and Assessment Act of 1987, OEHHA promulgates the Guidance Manual for Preparation of Health Risk Assessments (OEHHA, 2015) that includes the algorithms, exposure variants, cancer and non-cancer health values, and air modeling protocols to prepare HRAs. Although these guidelines are designed for point-source, facility-specific emissions, AQMD has decided to recommend use of these guidelines for land use projects that are subject to CEQA and may emit DPM in amounts that could result in significant impacts to the environment. The latest version of these guidelines were approved in February 2015. The guidelines included a number of updates including the recommendation to calculate cancer risk by accounting for Early Life Exposure adjustments to account for the presumed sensitivity to carcinogens and differences in intake rates. Using the point-estimate approach, cancer risk at residential receptors is calculated with consideration of receptor dose, toxic potency, age sensitively, exposure duration, average risk, and the amount of time the
receptor is home for the age the age groups ranging from third-trimester to 9 years, to thirty years, and to seventy years. Cancer risk at non-residential receptors accounts for similar criteria for a 25 -year assumed exposure duration.

It should be noted that early-life exposure was recognized by the EPA as a necessity for mutagenic carcinogens. OEHHA has discussed this fact in their support documentation and include 3 (of 23) non-mutagenic carcinogens (DDT, DES, and TCDD) in their meta-analysis of multi-stage life cancer exposure; however, the ultimate conclusion was that the available data and modes of action were not sufficient in supporting adjustments to non-mutagenic carcinogens. Mutagens cause changes to genetic material (DNA) that increase the frequency of mutations that produce carcinogenic effects. DPM is not carcinogenic through a mutagenic mode of action. The EPA meta-analysis included several hundred studies for 67 chemicals, compared to OEHHA's "subset" of 145 studies for 23 carcinogens. As mentioned, the Hotspots program applies to facilities and the guidance manual specifically states that the document should not to be applied to roadways because the program only addresses stationary sources. As the AQMD continues to incorporate OEHHA's new Guidelines into its programs, it should be further noted that mobile-source toxics have yet to be officially addressed in the documentation, although AQMD staff is recommending it be used as such. The staff presentations include mention of possible application of the Guidelines to DPM emissions or mobile-source toxics; however, analysis of the applicability of the Guidelines to mobile-source toxics or the economic impact that could result have not been analyzed or released to the public. Rule modifications have not been presented that would apply the Guidelines to mobile-source toxics and the AQMD's primary documentation for assessing DPM emissions (http://www.aqmd.gov/docs/default-source/ceqa/handbook/mobile-source-toxics-analysis.doc?sfvrsn=2) has not been updated to incorporate the changes reflected in the guidelines.

4.2.1 Truck and Bus Regulation

In December 2008, the California Air Resources Board (ARB) approved the Truck and Bus Regulations as part of their rulemaking authority and adopted in Title 13 (Motor Vehicles) of the California Code of Regulations (CCR). These regulations are applicable to all diesel-fueled trucks and buses with a gross vehicle weight rating (GVWR) of 14,000 pounds or more (Class 4 or greater) that are privately or federally owned and for privately and publically owned school buses (ARB, 2011). These regulations are designed to reduce emissions of particulate matter and oxides of nitrogen from existing diesel vehicles operating in California. Compliance scheduling is phased for light and heavy vehicles depending on the age of the vehicle engine. Full compliance across vehicle ratings is set in 2023. Regulations affect the following areas:

- Auxiliary Power Units
- Port and Rail Yard Trucks
- Emissions Control Label Inspection
- Greenhouse Gas Emissions Reductions
- Heavy-Duty Diesel Vehicle Inspection
- Idling Reduction
- Periodic Smoke Inspection
- Public and Utility Agencies
- Public Transit Agencies
- School Bus Fleets
- Solid Waste Collection Vehicles
- Transport Refrigeration Units

Starting in 2015, lighter trucks (between 14,000 and 26,000 gross vehicle weight rating (GVWR)) will be required to replace the vehicle and/or engine if the engine manufacture date is from 1995 or earlier. Newer engines will be required to be replaced on a graduated scale until 2023 when all engines will be required to meet model year 2010 emissions or equivalent. Heavier truck operators (greater than 26,000 GVWR) have options for meeting the regulation requirements through 2023. Vehicles with engine years earlier than 1994 and 1995 will be required to be replaced in 2015 and 2016, respectively. Operators with engine years between 1996 and 2006 have the option to install a particulate filter before being required to replace the engine towards the compliance deadline. Later engines are considered compliant in 2023 when they demonstrate 2010 emissions levels or equivalent.

Idling restrictions were established in 2008 and apply to vehicles greater than 10,000 GVWR (Class 3 or greater). These restrictions limit idling to five minutes or less before manual or automatic shutdown must be initiated at a location (facility). Engine models manufactured in 2008 and thereafter are required to be equipped with a non-programmable engine shutdown mechanism that automatically shuts off the engine after five minutes of idling.

[^3] Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

The following discussion summarizes the Required Source Information identified in Table 1 of the SCAQMD health risk assessment guidance.

5.1 Facility and Surroundings

5.1.1 Location

The project is located south of Center Street and north of Placentia Lane in the City of Riverside, California, Universal Transverse Mercator (UTM) coordinates Zone 11 N, 467247 Easting, 3764194 Northing, World Geodetic System (WGS) 1984 (see Exhibit 1, Regional Context and Vicinity Map).

5.1.2 Local Land Use

Some populations are more susceptible to the effects of air pollution than the population at large; these populations are defined as sensitive receptors. Sensitive receptors include children, the elderly, the sick, and the athletic. Land uses associated with sensitive receptors include residences, schools, playgrounds, childcare centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. Sensitive receptors are located north, east, and south of the project. The AB Brown Sports Complex Park is located directly south of the project site. Residential uses are located north and west of the project site. Exhibit 2 (Radius Map) identifies existing development in the project vicinity based on recent assessor's parcel data.

5.1.3 Facility Plot Plan

The project includes the construction of a 308,000 -square-foot building on 15.63 acres. Diesel particulate matter (DPM)emissions will occur from truck movement along proposed drive aisles, truck movement along local roadways, and from truck idling at loading/unloading docks.

5.1.4 Operating Schedule

The tenant for the proposed building is unknown at this time, thus, the operating schedule is assumed at 24 hours a day, 365 days a year, as a worst-case scenario. Note that this means there will be no opening or start of day delay that could result in vehicle queuing at this location.

5.2 Mobile Emissions Sources

5.2.1 Hazard Identification

The proposed project will result in the generation of heavy diesel truck traffic that has been identified as a gross-emitter of DPM (CARB, 2014). DPM was identified as a toxic air contaminant (TAC) because of its potential to cause cancer, premature deaths, and other health problems. DPM was identified as a toxic air contaminant (TAC) because of its potential to cause cancer, premature deaths, and other health problems. Health hazards associated with DPM are especially hazardous for children because their lungs are still developing, and the elderly who may have other serious health problems. Health risks from DPM occur exclusively through the inhalation pathway.

5.2.2 Hourly Emissions Rate

Table 2 (Trip Generation) Error! Reference source not found.summarizes the estimated average daily traffic (ADT) volumes generated by the project based on the Institute of Transportation Engineers 9th edition Trip Generation Manual (ITE, 2012) at the request of the City of Riverside Engineering Department. It should be noted that while this building was proposed as a high-cube warehouse and is anticipated to accommodate future tenants for that purpose, the City felt it appropriate to analyze a "worst-case" scenario by modeling trip generation as a manufacturing uses, thus, the analysis found herein is conservative in that trips generation has been inflated by 232 percent. The proposed project was modeled with an estimated daily trip rate of 3.82 per 1,000 square feet. The survey and analytical data found in the City of Fontana Truck Trip Generation Study (Neustaedter, Neustaedter, Garnatero, \& Fuller, 2003) was used in the project Traafic Impact Analysis (Kunzman, Ballard, \& Crawford, 2016). Passenger vehicles were modeled as 74.45 percent of the fleet mix, light-duty trucks as 8.4 percent of the fleet mix, medium-heavy duty trucks as 4.6 percent of the truck trips, and heavy-heavy duty truck trips as 25.6 percent of the fleet mix. For this analysis, it is assumed that the building will operate 24 hours a day.

Table 2 (Trip Generation)

Vehicle Type	Average Daily Trips	Average Hourly Trips	Average Hourly Trucks
Passenger	729.5	30.4	---
Light-Duty Trucks	70.6	2.9	--
Medium-Heavy Duty Trucks	105.9	4.4	2.2
Heavy-Heavy Duty Trucks	270.6	11.3	5.65
Source: Kunzman Associates 2015			

Running and idling emissions rates for diesel particulate matter were modeled using EMFAC2014 (see Appendix A). EMFAC2014 was run for calendar year 2018, based on a 2018 opening year for the proposed project. The EMFAC emissions database combines aggregate emissions for multiple model years based on the project opening year. If the construction and operation of the proposed project were to be delayed, the emissions factors included in this report would be considered a worst-case scenario because emissions rates improve as newer model years become available and older vehicles are retired. EMFAC2014 was executed for ten miles per hour (mph) for medium-heavy duty (MHD) and heavy-heavy duty (HHD) trucks using an aggregate of model years to generate the emissions factors for on-site truck movement. Idling emissions for MHD (labeled T6 in the EMFAC emissions database) and HHD (labeled T7 in the EMFAC emissions database) trucks were also modeled for calendar year 2018. Note that State law limits idling to five minutes per location without exception for entry and exits; therefore, idling emissions were modeled using EMFAC2014 and adjusted to account for the five-minute idling limitation.

EMFAC2014 was used for on-road emissions factors at 25 MPH on Center Street. Emissions factors were converted into units of grams per second per square meter of area for drive aisle movement and on-road movement for input to the American Meteorological Society/Environmental Protection Agency Regulatory Model (EPA, 2004) using the formula provided in Equation 1 (Running Exhaust Emissions).

Equation 1 (Running Exhaust Emissions)
$E_{R}=\left(\left[\left\{E M F A C_{g / m p h} \times T \times D\right\} \div 60\right] \div 60\right) \div A$
where,
$\mathrm{E} \quad=\quad$ Emissions (grams per second per square meter)
R $=$ Emissions Type: Running Exhaust
EMFAC $=$ EMFAC2014 Output (grams per hour)
$\mathrm{g}=\quad$ grams
$\mathrm{mph}=$ mile per hour
$\mathrm{T}=$ Trucks
D $\quad=\quad$ Travel Distance (two-way) (miles)
$\mathrm{A}=$ Area (square meters)
Equation 2 (Idling Exhaust Emissions)

$$
E_{I}=\left[\left\{\left(E M F A C_{g / h} \times T\right) \div 60\right\} \div 60\right] \times L_{I}
$$

where,

| E | $=$ Emissions (grams per second per square meter) |
| :--- | :--- | :--- |
| I | $=$ Emissions Type: Idling Exhaust |
| EMFAC | $=$ EMFAC2014 Output (grams per hour) |
| g | $=$ grams |
| h | $=$ hour |
| T | $=$ Trucks |
| L | $=$ Limitation Coefficient (0.08) |

Idling emissions are presented in grams per second and were calculated using Equation 2 (Idling Exhaust Emissions). Trucks will idle for a maximum of five total minutes. Trip distribution is based on the traffic impact analysis prepared by Kunzman Associates
(see Appendix B, Traffic Impact analysis). Table 3 ((Emissions Factors) summarizes the emissions factors for each area of the onand off-site area.

Table 3 (Emissions Factors)

Source	
Building	
Truck Bay (DOC1)	0.000059122861
Truck Bay (DOC2)	0.000109799599
Drive Aisle (AIS1)	0.000000003175
Drive Aisle (AIS2)	0.000000008525
Streets	
Center Street (CEN1)	0.000000000881
Center Street (CEN2)	0.000000001028
Center Street (CEN3)	0.000000003824
* grams per second per square meters $\left(\mathrm{g} / \mathrm{s} / \mathrm{m}^{2}\right)$ for vehicle movement and grams per second $(\mathrm{g} / \mathrm{s})$ for idling emissions	

5.2.3 Source Location

On-site emissions sources are identified in Exhibit 3 (On-Site Emissions) and Exhibit 4 (Off-Site Emissions). Table 4 (Source Locations) provides the Universal Transverse Mercator (UTM) coordinates for the southwest corner of each area source. Although SCAQMD recommends emissions be modeled as area or volume sources, the idling sources were input a point source from the center of the docking bay to account for building downwash.

Table 4 (Source Locations)

Source	Easting	Northing	
Building	467186	3764204	
Truck Bay (DOC1)	467308	3764204	
Truck Bay (DOC2)	467091	3764194	
Drive Aisle (AIS1)	467247	3764194	
Drive Aisle (AIS2)			
Streets	466678	3764350	
Center Street (CEN1)	467099	3764351	
Center Street (CEN2)	467383	3464351	
Center Street (CEN3)			

5.2.4 Source Treatment

The source height for all emissions sources is 14 feet (4.2 meters), the approximate height of a truck exhaust. On- and off-site vehicle movement was modeled as AREAPOLY sources using the AERMOD command for irregular polygons and idling emissions were modeled as POINT sources. Idling exhaust release characteristics were assumed with an exit temperature of 366.48° Kelvin, exit velocity of 50 meters per second (m / s), and an exhaust diameter of 0.1016 meters.

5.3 Area Dimensions

All off-site vehicle movement emissions sources are modeled as a polygon area (AREAPOLY) source in AERMOD. On-site vehicle movement was modeled as also modeled as irregular polygon area sources to account for truck movement into trailer parking, on drive aisles, and into docking bays. Table 5 ((Area Dimensions) identifies the dimensions used in the model.

Table 5 (Area Dimensions)

| Source | Length (m) |
| :--- | :--- | :--- | :--- |

5.4 Air Dispersion Modeling

Cancer risk and non-cancer health risks to sensitive receptors within one-quarter mile of the project site were estimated using the EPA AERMOD model and guidance provided by SCAQMD in the Health Risk. Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Emissions white paper (SCAQMD, 2003). AERMOD is the EPA regulatory dispersion model that provides multiple source Gaussian plume models with maximum ground-level concentrations for point, area, flare, and volume sources. AERMOD replaced the Industrial Source Complex (ISC3) model in 2005 as the EPA regulatory model. The composite emissions factor for idling trucks and on-site truck movement was estimated using Emissions Factor 2014 (EMFAC2014). EMFAC2014 was developed by ARB to calculate emissions inventories for mobile vehicles operating in California based on raw vehicle data. The dimensions of the proposed buildings were modeled using Building Profile Input Program Prime (BPIPPRM) (see Appendix C).

5.4.1 Meteorological Data

Meteorological data was prepared by SCAQMD for the Riverside station using AERMET version 12345 (available at http://www.aqmd.gov/home/library/air-quality-data-studies/meteorological-data/aermod-table-1). Surface characteristics for the Riverside station include a surface albedo of 0.19 , surface roughness of 0.314 meters, and a Bowen ratio of 1.0. The station is located at UTM Zone 11 North, 461.64 kilometers (km) easting and 33762.10 km northing at an elevation of 250 meters above sea level.

5.4.2 Discrete Receptors

Thirty-five discrete receptors within one-quarter mile of the project site were input into the model. Twenty-four of the discrete receptors were identified as residential uses or potential residential uses and thus have the potential to house sensitive receptors. The remainder were identified as commercial or industrial uses and although not considered sensitive receptors they are included in the worker cancer and health risk elevation provided herein.

5.4.3 Receptor Grid

Emissions were modeled in a 1,000-meter receptor grid network at 100 meter transects around the project site. This resulted in a 100 -point grid identifying concentrations around the project site at an approximately one-quarter mile buffer around the project site.

Exhibit 2 Radius Map
Manainglgemmission - Exhibit 1 - Development Review Compitteerstaffikeportject Development Review Committee - Exhibit 7-CEQA Documents ${ }^{\text {fis Sreet, Riverside, Calitorna }}$ Attachment 3-City Planning Commission Report a nd Exhibits - April 05, 2018

[^4]

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents
 Development Review Committee - Exhibit 7-CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Cancer risk and non-cancer health risks to receptors within one-quarter mile of on-site sources were estimated using the EPA AERMOD model and guidance provided by SCAQMD in the Health Risk. Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Emissions white paper and the 2015 Guidance Manual for the Preparation of Health Risk. Assessment.

6.1 Cancer Risk

SCAQMD has established thresholds for emissions of toxic air contaminants. Toxic air emissions from a project are considered potentially significant if maximum incremental cancer risk (MICR) is greater than ten persons in 1,000,000 (1E-05). Cancer risk is determined by calculating the combinatory effects of the cancer potency factor (CPF) when inhaling the toxic, the daily inhalation dose, the age group the receptor is cohort to, the duration of exposure over a lifetime (25,30 , or 70 years depending on the analysis), and the amount of time spent at the location of exposure (see Appendix C). Cancer risk was assessed for three specific locations within one-quarter mile of the proposed project, as recommended by OEHHA: the maximum exposed individual resident (MEIR) over a 30-year exposure duration that characterizes the maximum residency tendency in California, the maximum exposed individual worker (MEIW) over a 25-year exposure duration characterizing the maximum job tenure tendency in California, and the point of maximum impact (PMI) irrespective of receptor type. Cancer risk for exposed residential and worker receptors was calculated using Equation 3 (Residential Cancer Risk) and Equation 4 ((Worker Cancer Risk). Residential risk calculations account for presumed sensitivity to carcinogens and differences in intake rates for the third-trimester to birth, birth to two-years, two-years to nine-years, two-years to nine-years, two-years to 16 -years, 16 -year to 30 -years, and 16-years to 70 years' age bins.

Equation 3 (Residential Cancer Risk)

$$
R I S K_{I N H . R E S}=D O S E_{A I R . R E S} \times C P F \times A S F \times \frac{E D}{A T} \times F A H
$$

Equation 4 (Worker Cancer Risk)

$$
\text { RISK }_{\text {INH.WORK }}=D O S E_{A I R . W O R K} \times C P F \times A S F \times \frac{E D}{A T}
$$

Where:

DOSE ${ }_{\text {AIR }}$	$=$	Daily Inhalation Dose (mg/kg-day)
CPF	=	Cancer Potency Factor for Inhalants (mg/kg-day). CPF is expressed as the 95th percent upper confidence limit of the slope of the dose response curve under continuous lifetime exposure conditions. The CPF for diesel exhaust is $1.1 \mathrm{mg} / \mathrm{kg}$-day.
ASF	$=$	Age Sensitivity Factor (ASF. ASF is a coefficient that inflates overall cancer risk for younger receptors based on data that suggests younger animals may be more susceptible when exposed to carcinogens. The recommended coefficients are 10 for the third-trimester to birth and two-year age bins, three for the two-year to nine-year and 16-year age bins, and one for receptors over 16 years of age.
ED	$=$	Exposure Duration (years). Exposure duration characterizes the length of residency or employment of the receptor. As discussed above, MEIR over a 30-year exposure duration is used to characterize the upper limit of residency in California while residential 9-year and 70-year exposure durations and included to characterize average residency tendency and lifetime exposure scenarios, respectively. MEIW over a 25-year exposure is used to characterize the upper limit of job tenure in California.
AT	$=$	Averaging Time (years). A 70-year (lifetime) averaging time is used to characterize to total risk as a factor of average risk over a typical lifespan.

FAH $\quad=\quad$ Fraction at Home. FAH is the percentage of time the receptor is physically at the receptor location. The recommended percentages are 85 percent for the third-trimester to birth and two-year age bins, 72 percent for the two-year to nine-year and 16 -year age bins, and 73 for receptors over 16 years of age.

Equation 5 (Residential Dose)

$$
D O S E_{A I R . R E S}=C_{A I r} \times \frac{B R}{B W} \times A \times E F \times 10^{-6}
$$

Equation 6 (Worker Dose)

$$
\operatorname{DOSE}_{A I R . W O R K}=C_{A I r} \times W A F \times \frac{B R}{B W} \times A \times E F \times 10^{-6}
$$

Where:

$\mathrm{CaIR}^{\text {A }}$	$=$	Concentration of TAC in air $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$. Concentration of toxic in micrograms per one cubic meter of air. The AERMOD program is used in the study to determine concentrations of diesel particulate matter at surrounding discrete and grid receptor points.
WAF	$=$	Worker Air Concentration Adjustment Factor. The WAF is a coefficient designed to characterize the overlap of offsite worker schedules with the operations of a land use under study.
BR		
BW	=	Breathing Rate \div Body Weight ($L / \mathrm{kg} /$ day). Daily breathing rate normalized to body weight. The $95^{\text {th }}$ percentile breathing rate to body weight ratios are used in this study with a recommended $361 \mathrm{~L} / \mathrm{kg} /$ day for the third-trimester to birth age bin, 1,090 $\mathrm{L} / \mathrm{kg} /$ day for the birth to two-years age bin, $861 \mathrm{~L} / \mathrm{kg} /$ day for the two-years to nineyears age bin, 745 for the two-years to 16 -years age bin, $335 \mathrm{~L} / \mathrm{kg} /$ day for the 16 years to 30 -years age bin, and $290 \mathrm{~L} / \mathrm{kg} /$ day for the 16 -years to 70 -years age bin.
A	=	Inhalation Absorption Factor. Is a coefficient that reflects the fraction of chemical absorbed in studies used in the development of CPF and Reference Exposure Levels (RELs). An absorption factor of one is recommended for all chemicals.
EF	=	Exposure Frequency. EF is the ratio of days in a year that a receptor is receiving the dose. The recommended EF is 0.96 characterizing an assumed 350 days a year that a residential receptor is home for some portion of the day.

Equation 7 (Worker Adjustment Factor)

$$
W A F=\frac{H_{R E S}}{H_{\text {SOURCE }}} \times \frac{D_{R E S}}{D_{\text {SOURCE }}} \times D F
$$

Where:

$H_{\text {RES }}$	$=$Residential Hours. Daily Hours by that the Annual Average Residential Air Concentration is Calculated.
Hsource $=$	Source Operational Hours. For this study it was assumed that the facilities will operate 24 hours a day.
$D_{\text {RES }}=$Residential Days. Weekly Days by that the Annual Average Residential Air Concentration is Calculated.	
DSOURCE $=$Weekly Operational Days of the Source. For this study it was assumed that the facilities will operate seven days a week. DF$=$Discount Factor. Coefficient for Partial Overlap of Work Schedule and Source Operations. No discount factor was applied in this study	

Concentrations were modeled using AERMOD and then input into the Hot Spots and Reporting Program (HARP) Health Risk Assessment Standalone Tool (RAST) computer software to calculate cancer risk based on the methods and recommendations found in the HRA Guidelines. The results of the HARP evaluation of cancer risk for residential 9 -years, 30 years, and 70 years, and worker 25 -years exposure scenarios for grid receptors and discrete receptors are summarized in the following tables and detailed program results are included as Appendix D.

Table 6 (30 Year (Maximum) Residential Cancer Risk (Discrete Receptors))

Index	Easting	Northing	Concentration	Cancer Risk
6	467546	3763993	0.00421	$2.87 \mathrm{E}-06$
7	467561	3763987	0.00403	$2.75 \mathrm{E}-06$
18	467652	3764011	0.00365	$2.49 \mathrm{E}-06$
19	467658	3763981	0.00334	$2.28 \mathrm{E}-06$
9	467567	3763930	0.00325	$2.22 \mathrm{E}-06$
10	467569	3763901	0.00294	$2.00 \mathrm{E}-06$
15	467614	3763915	0.00294	$2.00 \mathrm{E}-06$
8	467565	3763885	0.0028	$1.91 \mathrm{E}-06$
16	467621	3763893	0.00272	$1.85 \mathrm{E}-06$
14	467613	3763872	0.00258	$1.76 \mathrm{E}-06$
13	467603	3763849	0.00243	$1.66 \mathrm{E}-06$
23	467702	3763877	0.00234	$1.60 \mathrm{E}-06$
12	467595	3763829	0.00232	$1.58 \mathrm{E}-06$
24	467721	3763881	0.0023	$1.57 \mathrm{E}-06$
22	467691	3763858	0.00226	$1.54 \mathrm{E}-06$
21	467680	3763839	0.00218	$1.49 \mathrm{E}-06$
20	467665	3763821	0.00211	$1.44 \mathrm{E}-06$
17	467635	3763787	0.002	$1.36 \mathrm{E}-06$
11	467575	3763756	0.00195	$1.33 \mathrm{E}-06$
3	466818	3764404	$1.06 \mathrm{E}-06$	

Index	Easting	Northing	Concentration	Cancer Risk
4	466906	3764000	0.00149	$1.02 \mathrm{E}-06$
5	467244	3763650	0.0013	$8.86 \mathrm{E}-07$
2	466724	3764152	0.00121	$8.25 \mathrm{E}-07$
1	466699	3764107	0.00107	$7.30 \mathrm{E}-07$

Table 7 (70 Years (Lifetime) Population-Wide Cancer Burden)

Index	Easting	Northing	Concentration	Cancer Risk
76	467291	3764194	0.03558	$3.18 \mathrm{E}-05$
86	467391	3764194	0.02631	$2.35 \mathrm{E}-05$
85	467391	3764294	0.02097	$1.87 \mathrm{E}-05$
66	467191	3764194	0.01852	$1.66 \mathrm{E}-05$
75	467291	3764294	0.00001	$8.94 \mathrm{E}-06$
77	467291	3764094	0.00934	$8.35 \mathrm{E}-06$
65	467191	3764294	0.00932	8.33E-06
87	467391	3764094	0.00895	$8.00 \mathrm{E}-06$
95	467491	3764294	0.00851	$7.61 \mathrm{E}-06$
96	467491	3764194	0.00826	$7.38 \mathrm{E}-06$
55	467091	3764294	0.00772	$6.90 \mathrm{E}-06$
15	467591	3764294	0.00759	$6.78 \mathrm{E}-06$
97	467491	3764094	0.00725	$6.48 \mathrm{E}-06$
56	467091	3764194	0.00679	$6.07 \mathrm{E}-06$
84	467391	3764394	0.00678	$6.06 \mathrm{E}-06$
67	467191	3764094	0.00064	$5.72 \mathrm{E}-06$
74	467291	3764394	0.00615	$5.50 \mathrm{E}-06$
94	467491	3764394	0.00061	$5.45 \mathrm{E}-06$
64	467191	3764394	0.00052	$4.65 \mathrm{E}-06$
16	467591	3764194	0.00517	$4.62 \mathrm{E}-06$
17	467591	3764094	0.00502	$4.49 \mathrm{E}-06$
98	467491	3763994	0.00447	$3.99 \mathrm{E}-06$
88	467391	3763994	0.00432	$3.86 \mathrm{E}-06$
78	467291	3763994	0.00423	$3.78 \mathrm{E}-06$
14	467591	3764394	0.00421	$3.76 \mathrm{E}-06$
54	467091	3764394	0.00396	$3.54 \mathrm{E}-06$
18	467591	3763994	0.00395	$3.53 \mathrm{E}-06$
57	467091	3764094	0.00338	$3.02 \mathrm{E}-06$
68	467191	3763994	0.00332	$2.97 \mathrm{E}-06$
45	466991	3764294	0.0033	$2.95 \mathrm{E}-06$
46	466991	3764194	0.00314	$2.81 \mathrm{E}-06$
99	467491	3763894	0.00302	$2.70 \mathrm{E}-06$
89	467391	3763894	0.00291	$2.60 \mathrm{E}-06$

${ }^{26}$ ning Commission Exhibit 1 - Development Review Commitalth RiskAssessment
Plañning Commission - Exhibit 1 - Development Review Commititee ${ }^{26}$ Staff Repersment Development Review Committee - Exhibit 7-CEQA Documents
Attachment 3-City Planning Commission Report and Exhibits - April 05, 2018

Index	Easting	Northing	Concentration	Cancer Risk
19	467591	3763894	0.00282	$2.52 \mathrm{E}-06$
79	467291	3763894	0.00275	$2.46 \mathrm{E}-06$
44	466991	3764394	0.00272	$2.43 \mathrm{E}-06$
73	467291	3764494	0.00268	$2.40 \mathrm{E}-06$
83	467391	3764494	0.00255	$2.28 \mathrm{E}-06$
63	467191	3764494	0.00243	$2.17 \mathrm{E}-06$
47	466991	3764094	0.00237	$2.12 \mathrm{E}-06$
69	467191	3763894	0.00235	$2.10 \mathrm{E}-06$
58	467091	3763994	0.00231	$2.06 \mathrm{E}-06$
35	466891	3764294	0.00228	$2.04 \mathrm{E}-06$
93	467491	3764494	0.00228	$2.04 \mathrm{E}-06$
90	467391	3763794	0.00218	$1.95 \mathrm{E}-06$
20	467591	3763794	0.00212	$1.89 \mathrm{E}-06$
36	466891	3764194	0.00209	$1.87 \mathrm{E}-06$
13	467591	3764494	0.002	$1.79 \mathrm{E}-06$
80	467291	3763794	0.002	$1.79 \mathrm{E}-06$
53	467091	3764494	0.00199	$1.78 \mathrm{E}-06$
34	466891	3764394	0.00198	$1.77 \mathrm{E}-06$
59	467091	3763894	0.0018	$1.61 \mathrm{E}-06$
48	466991	3763994	0.00179	$1.60 \mathrm{E}-06$
70	467191	3763794	0.00177	$1.58 \mathrm{E}-06$
37	466891	3764094	0.00175	$1.56 \mathrm{E}-06$
25	466791	3764294	0.00174	$1.56 \mathrm{E}-06$
72	467291	3764594	0.00172	$1.54 \mathrm{E}-06$
43	466991	3764494	0.0016	$1.43 \mathrm{E}-06$
62	467191	3764594	0.0016	$1.43 \mathrm{E}-06$
82	467391	3764594	0.0016	$1.43 \mathrm{E}-06$
24	466791	3764394	0.00155	$1.39 \mathrm{E}-06$
26	466791	3764194	0.00153	$1.37 \mathrm{E}-06$
60	467091	3763794	0.00147	$1.31 \mathrm{E}-06$
38	466891	3763994	0.00142	$1.27 \mathrm{E}-06$
49	466991	3763894	0.00142	$1.27 \mathrm{E}-06$
92	467491	3764594	0.00141	$1.26 \mathrm{E}-06$
52	467091	3764594	0.00137	$1.22 \mathrm{E}-06$
27	466791	3764094	0.00134	$1.20 \mathrm{E}-06$
33	466891	3764494	0.00132	$1.18 \mathrm{E}-06$
12	467591	3764594	0.00127	$1.14 \mathrm{E}-06$
5	466691	3764294	0.00125	$1.12 \mathrm{E}-06$
71	467291	3764694	0.00122	$1.09 \mathrm{E}-06$
4	466691	3764394	0.00118	$1.05 \mathrm{E}-06$

 Development Review Committee - Exhibit 7-CEQA Documents
Attachment 3-City Planning Commission Report and Exhibits - April 05, 2018

Index	Easting	Northing	Concentration	Cancer Risk
50	466991	3763794	0.00118	$1.05 \mathrm{E}-06$
42	466991	3764594	0.00117	$1.05 \mathrm{E}-06$
6	466691	3764194	0.00115	$1.03 \mathrm{E}-06$
39	466891	3763894	0.00115	$1.03 \mathrm{E}-06$
61	467191	3764694	0.00115	$1.03 \mathrm{E}-06$
81	467391	3764694	0.00114	$1.02 \mathrm{E}-06$
28	466791	3763994	0.00113	$1.01 \mathrm{E}-06$
23	466791	3764494	0.00108	$9.65 \mathrm{E}-07$
7	466691	3764094	0.00103	$9.21 \mathrm{E}-07$
51	467091	3764694	0.00102	$9.12 \mathrm{E}-07$
91	467491	3764694	0.00101	$9.03 \mathrm{E}-07$
32	466891	3764594	0.00099	$8.85 \mathrm{E}-07$
40	466891	3763794	0.00096	$8.58 \mathrm{E}-07$
29	466791	3763894	0.00094	$8.40 \mathrm{E}-07$
8	466691	3763994	0.0009	$8.04 \mathrm{E}-07$
11	467591	3764694	0.0009	$8.04 \mathrm{E}-07$
41	466991	3764694	0.00089	$7.95 \mathrm{E}-07$
3	466691	3764494	0.00088	$7.86 \mathrm{E}-07$
22	466791	3764594	0.00084	$7.51 \mathrm{E}-07$
30	466791	3763794	0.00079	$7.06 \mathrm{E}-07$
31	466891	3764694	0.00078	$6.97 \mathrm{E}-07$
9	466691	3763894	0.00076	$6.79 \mathrm{E}-07$
2	466691	3764594	0.00071	$6.35 \mathrm{E}-07$
21	466791	3764694	0.00067	$5.99 \mathrm{E}-07$
10	466691	3763794	0.00065	$5.81 \mathrm{E}-07$
1	466691	3764694	0.00057	$5.09 \mathrm{E}-07$

Table 8 (25 Years (Maximum) Worker Cancer Risk (Discrete Receptors))

Index	Easting		Northing	Concentration
8	467409	3764230	0.01766	$1.09 \mathrm{E}-06$
9	467550	3764077	0.00563	$3.48 \mathrm{E}-07$
11	467687	3764217	0.00433	$2.68 \mathrm{E}-07$
10	467600	3764395	0.004	$2.48 \mathrm{E}-07$
12	467747	3764156	0.00323	$2.00 \mathrm{E}-07$
5	467125	3764458	0.00257	$1.59 \mathrm{E}-07$
7	467253	3764509	0.00241	$1.49 \mathrm{E}-07$
4	467110	3763852	0.00172	$1.06 \mathrm{E}-07$
6	46672142	3764309	0.00169	$1.05 \mathrm{E}-07$
2			0.00146	$9.04 \mathrm{E}-08$

28 28ing Commission - Exhibit 1 - Development Review Commititeath Risk Assessment
Plañining Commission - Exhibit 1 - Development Review Commititee ${ }^{\text {Hith }}$ Staff Ressment Development Review Committee - Exhibit 7-CEQA Documents
Attachment 3-City Planning Commission Report and Exhibits - April 05, 2018

Index	Easting	Northing	Concentration	Cancer Risk
3	466773	3764400	0.00143	$8.85 \mathrm{E}-08$
1	466685	3764396	0.00114	$7.06 \mathrm{E}-08$

6.2 Cancer Risk and Cancer Burden

The breadth of averaging options was included in this study to provide the broadest depth of information regarding cancer risk to the public and local decision makers. In regards to the health risk assessment and CEQA, identifying the MICR is based on the greater of the MEIW and MEIR using the appropriate scenario for those receptors categories and PMI is assessed through community exposure. The lifetime exposure scenario is appropriate for determining cancer burden in those areas that may be exposed to cancer risk greater than one in one million cases. Evaluation of these scenarios will identify any receptors that exceed the MICR of 10 in one million or the 0.5 increased cancer burden thresholds promulgated by SCAQMD.

The site of the MEIR is the residential dwelling unit located at 3610 Placentia Lane, east of the project site. The incremental increase in cancer risk at this property is 2.87 in one million as identified as Index 6 of Table 6 . The location of the MEIW is at the Brothers Towing of Riverside site directly east of the project site at 3655 Placentia Ln. The incremental increase in cancer risk at this business is 1.09 in one million and is identified as Index 8 of Table 8.

Cancer burden is the product of public cancer risk and the population exposed to the carcinogen. There are 25 residential properties located within $1 / 4$-mile of the project site. Census data indicates that the average owner-occupied household size in the city is 3.10 persons per dwelling unit, thus, an estimated population of 78 people live within one-quarter mile of the project site. The average cancer risk based on the lifetime exposure scenario is $3.34 \mathrm{E}-06$ (approximately 3.34 cases per million people). The product of the cancer risk and the estimated population is 0.0003 . This does not exceed the SCAQMD threshold of 0.5 excess cancer cases. Under a worst-case scenario, the PMI calculated as cancer burden of 0.0025 cases is located at the Brothers Towing of Riverside site. This point on the receptor grid is identified as Index 76 of Table 7. Under neither scenario would cancer burden exceed the applicable threshold.

6.3 Non-Cancer Risk

Chronic non-cancer risks are considered significant if the project toxic air contaminant emissions result in a hazard index greater than or equal to one. The hazard index is determined by calculating the average annual toxic concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ divided by the reference exposure level (REL) for a particular toxic. The REL is the concentration at which no adverse health impacts are anticipated and is established by OEHHA. The chronic REL for DPM was established by OEHHA as $5 \mu \mathrm{~g} / \mathrm{m}^{3}$. Non-cancer risk is estimated using Equation 8 (Chronic Hazard Quotient). Chronic non-cancer risk was evaluated using HARP and identified the highest hazard index or 0.00712 , identified as Index 76 of the lifetime receptor grid. This does not exceed the hazard index threshold of one promulgated by SCAQMD.

Equation 8 (Chronic Hazard Quotient)

$$
H I_{D P M}=\frac{C_{D P M}}{R E L_{A A C}}
$$

Where:
$H_{\text {DPM }} \quad$ Hazard Index; an expression of the potential for non-cancer health effects.
$C_{\text {DPM }} \quad$ Annual average DPM concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
REL ${ }_{\text {DPM }}$ Reference exposure level (REL) for DPM; the DPM concentration at which no adverse health effects are anticipated.

6.4 Conclusion

Discrete and grid receptor cancer risks are detailed in the AERMOD and HARP-RAST output files included in the appendix of this report. No thresholds for cancer or non-cancer risk will be exceeded by the project. The results of the study are summarized in Table 9 ((Cancer and Non-Cancer Risk Summary).
 Development Review Committee - Exhibit 7 - CEQA Documents

Table 9 (Cancer and Non-Cancer Risk Summary)

Receptor (Exposure Time)	Exposure Level	Threshold	Potentially Significant?
Resident (30 Years) Cancer Risk	0.000002870	0.00001	No
Worker (25 Years) Cancer Risk	0.000001090	0.00001	No
Community Level (70 Years) Cancer Risk	0.002500000	0.50000	No
Non-Cancer Hazard index	0.007120000	1.00000	No

[^5]

Planning Commission - Exhibit 1 - Development Review Commititee ${ }^{32}$ Hetaff Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

7 Index of Acronyms

μg
micrograms 24
AB
Assembly Bill 9
ADT
Average Daily Traffic 13
AMSL
Above Mean Sea Level 5
ARB
California Air Resources Board 10
ASF
Age Sensitivity Factor 23
CCR
California Code of Regulations 10
CEQA
California Environmental Quality Act 3
CPF
Cancer Potency Factor 23
DNA
Deoxyribonucleic Acid 10
F
Fahrenheit 5
GVWR
Gross Vehicle Weight Rating 10
HARP
Hot Spots and Reporting Program 25
HHD
Heavy-Heavy Duty Trucks 14
HRA
Health Risk Assessment. 9
kg
kilograms 23
L
Liters. 24
m^{3}
cubic milligrams 1,29
Maximum Exposed Individual Worker 23
MEIR
Maximum Exposed Individual Resident. 23
mg
milligrams 23
MHDMedium-Heavy Duty Trucks14
MICR
Maximum Increased in Cancer Risk 23
mph Miles Per Hour 14
OEHHA
Office of Environmental Health \& Hazard Assessment. 3PMI
Point of Maximum Impact 23
RAST
Health Risk Assessment Standalone Tool. 25
REL
Reference Exposure Level. 24, 29
SCAQMD
South Coast Air Quality Management District 3
TAC
Toxic Air Contaminant 9, 13
UTM
Universal Transverse Mercator 13
WGS
World Geodetic System 13

[^6]ARB. (2011). Facts About Truck and Bus Regulation Compliance Requirements Summary. Sacramento, CA: California Air Resources Board.
ARB. (2014, July 1). California's Plan to Reduce Diesel Particulate Matter Emissions Fact Sheet. Califormia's Plan to Reduce Diesel Particulate Matter Emissions Fact Sheet. Sacramento, CA, USA: California Air Resources Board.
EPA. (2004). User's Guide for the AMS/EPA Regulatory Model: AERMOD. Washintgon, DC: United States Environmental Protection Agency.
ITE. (2012). Trip Generation Manual (9th ed.). Washington DC: Institute of Transportation Engineers.
Kunzman, W., Ballard, C., \& Crawford, B. (2016). Center Street Warehouse Project Traffic Impact Analysis. Tustin: Kunzman Associates.
Neustaedter, C., Neustaedter, N., Garnatero, C., \& Fuller, L. (2003). Truck. Trip Generation Study. City of Fontan, Redevelopment \& Special Projects. Fontana: City of Fontana.
OEHHA. (2015). Guidance Manual for the Preparation of Health Risk Assessments. Sacramento, CA, USA: Office of Environmental Health Hazards Assessment.
SCAQMD. (2003). Health Risk Guidance for Analysing Cancer Risk from Mobile Source Diesel Emissions. Diamond Bar, CA: South Coast Air Quality Management District.
SCAQMD. (2014). Warehouse Truck Trip Study Data Results and Usage. Diamond Bar, CA: South Coast Air Quality Management District.
SCAQMD. (2015). Guidance Manual for the Preparation of Health Risk. Assessment. Diamond Bar, CA: South Coast Air Quality management District.
USGS. (1942). Riverside Quadrangle 15-Minute Series. United States Geological Survey.
WRCC. (2002, January 01). Prevailing Wind Direction. Retrieved October 2014, from Wetern Regional Cliumate Center: http://www.wrcc.dri.edu/htmlfiles/westwinddir.html
WRCC. (2009, April 23). Riverside Citrus Exp, California (047473). Retrieved October 2014, from Western Regional Climate Center: http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca7473

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents

calendar_year	season_month	sub_area	vehicle_class	fuel	temperature	relative_humidity		process	speed_time		pollutant	emission_rate
2018	Annual	Riverside (SC)	HHDT	Dsl			38	RUNEX			PM	0.053097344
2018	Annual	Riverside (SC)	HHDT	Dsl			38	RUNEX			PM	0.030758347
2018	Annual	Riverside (SC)	MHDT	Dsl			38	RUNEX			PM	0.228727645
2018	Annual	Riverside (SC)	MHDT	Dsl			38	RUNEX			PM	0.105783846
2018	Annual	Riverside (SC)	HHDT	Dsl				IDLEX			PM	0.03324648
2018	Annual	Riverside (SC)	MHDT	Dsl				IDLEX			PM	0.320429071

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents

DATE ：6／12／2015
TIME ：15：6：23
Center Street
＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
BPIP PROCESSING INFORMATION：
＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
The P flag has been set for preparing downwash related data for a model run utilizing the PRIME algorithm．

Inputs entered in METERS will be converted to meters using a conversion factor of 1．0000．Output will be in meters．

The UTMP variable is set to UTMY．The input is assumed to be in UTM coordinates．BPIP will move the UTM origin to the first pair of UTM coordinates read．The UTM coordinates of the new origin will be subtracted from all the other UTM coordinates entered to form this new local coordinate system．

The new local coordinates will be displayed in parentheses just below the UTM coordinates they represent．

Plant north is set to 0.00 degrees with respect to True North．
＝ニニニニニニニニニニニ＝
INPUT SUMMARY：
＝＝＝＝＝＝＝＝＝＝＝＝＝＝

Number of buildings to be processed ： 1

BLD	has 1	tier (s) with a base elevation of	0.00 METERS			
BUILDING	TIER	BLDG－TIER	TIER	NO．OF	CORNER	COORDINATES
NAME	NUMBER	NUMBER	HEIGHT	CORNERS	X	Y

BLD	1	1	12.00	6

467124.00	3764208.00 meters
0.00	$0.00)$ meters
467369.00	3764208.00 meters
245.00	$0.00)$ meters
467369.00	3764321.00 meters
245.00	$113.00)$ meters
467107.00	3764321.00 meters
-17.00	$113.00)$ meters
467107.00	3764287.00 meters
-17.00	$79.00)$ meters
467124.00	3764287.00 meters
0.00	$79.00)$ meters

Number of stacks to be processed ： 2

	STACK		STACK	COORDINATES
STACK NAME	BASE	HEIGHT	X	Y
DOC1	0.00	4.12	METERS	

Planning Commission－Exhibit 1 －Development Review Committee Staff Report Development Review Committee－Exhibit 7 －CEQA Documents

```
                467186.00 3764204.00 meters
                            ( 62.00 -4.00) meters
DOC2
                    0.00
    4.12 METERS
    467308.00 3764204.00 meters
                        184.00 -4.00) meters
No stacks have been detected as being atop any structures.
Overall GEP Summary Table
(Units: meters)
StkNo: 1 Stk Name:DOC1 Stk Ht: 4.12 Prelim. GEP Stk.Ht: 65.00 GEP: BH: 12.00 PBW: 129.82 *Eqn1 Ht: 30.00
*adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 1 Direction occurred: 94.00 Bldg-Tier nos. contributing to GEP: 1
```

```
StkNo: 2 Stk Name:DOC2 Stk Ht: 4.12 Prelim. GEP Stk.Ht: 65.00
```

StkNo: 2 Stk Name:DOC2 Stk Ht: 4.12 Prelim. GEP Stk.Ht: 65.00
GEP: BH: 12.00 PBW: 129.82 *Eqn1 Ht: 30.00
GEP: BH: 12.00 PBW: 129.82 *Eqn1 Ht: 30.00
*adjusted for a Stack-Building elevation difference of 0.00
*adjusted for a Stack-Building elevation difference of 0.00
No. of Tiers affecting Stk: 1 Direction occurred: 94.00
Bldg-Tier nos. contributing to GEP: 1

```
Summary By Direction Table
    (Units: meters)

Dominate stand alone tiers:

Drtcn: 10.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00 Single tier MAX: BH: 12.00 PBW: 277.64 PBL: 153.83 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -6.83 YADJ: -40.70
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\) Single tier MAX: BH: 12.00 PBW: 277.64 PBL: 153.83 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -28.01 YADJ: 79.44
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 20.00

StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00 Single tier MAX: BH: 12.00 PBW: \(284.85 \mathrm{PBL}: 189.98\) *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -17.45 YADJ: -28.17
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2
GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\)

> \begin{tabular}{c}  *adjusted for a Stack-Building elevation difference of \\ BldNo: 1 Bld Name:BLD \(\quad 0.00\) \\ \hline TierNo: 1 \end{tabular}

Drten: 30.00



Drtcn: 50.00
 Single tier MAX: BH: 12.00 PBW: 254.97 PBL: 260.32 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -44.92 YADJ: 12.92
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12 GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\) Single tier MAX: BH: 12.00 PBW: 254.97 PBL: 260.32 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -138.38 YADJ: 91.34
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 60.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12 \(\begin{array}{llllll} & \text { GEP: } & \text { BH: } & 12.00 & \text { PBW: } 129.82 & \text { *Equation } 1 \text { Ht: } \\ \text { Single tier MAX: } & \text { BH: } & 12.00 & \text { PBW: } 228.86 & \text { PBL: } 268.68 \text { *Wake Effect Ht: } & 30.00\end{array}\) Relative Coordinates of Projected Width Mid-point: XADJ: -51.69 YADJ: 26.39
```

 *adjusted for a Stack-Building elevation difference of 0.00
 BldNo: 1 Bld Name:BLD TierNo: 1
 StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 228.86 PBL: 268.68 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -157.35 YADJ: 87.39
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1
Drtcn: 70.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 195.79 PBL: 268.87 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -56.89 YADJ: 39.07
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 195.79 PBL: 268.87 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -171.54 YADJ: 80.79
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1
Drtcn: 80.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 156.78 PBL: 263.92 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -63.39 YADJ: 50.55
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 156.78 PBL: 263.92 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -183.53 YADJ: 71.74
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1
Drtcn: 90.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation $1 \mathrm{Ht}: 30.00$ Single tier MAX: BH: 12.00 PBW: 113.00 PBL: 262.00 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -79.00 YADJ: 60.50
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation $1 \mathrm{Ht}: 30.00$ Single tier MAX: BH: 12.00 PBW: 113.00 PBL: 262.00 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -201.00 YADJ: 60.50
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

```

Drtcn: 100.00

Pla nning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents


Drtcn: 110.00


Drtcn: 120.00


Drtcn: 130.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 244.05 PBL: 273.34 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -135.72 YADJ: 85.23
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12 GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00 Single tier MAX: BH: 12.00 PBW: 244.05 PBL: 273.34 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -229.18 YADJ: 6.81
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 140.00


Drtcn: 150.00
 Single tier MAX: BH: 12.00 PBW: 268.68 PBL: 228.86 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -140.82 YADJ: 82.64
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12 GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00 Single tier MAX: BH: 12.00 PBW: 268.68 PBL: 228.86 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -201.82 YADJ: -23.01
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 160.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 268.87 PBL: 195.79 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -136.96 YADJ: 77.54
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\)
Single tier MAX: BH: 12.00 PBW: 268.87 PBL: 195.79 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -178.69 YADJ: -37.10
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 170.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 263.92 PBL: 156.78 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -128.94 YADJ: 68.57
*adjusted for a Stack-Building elevation difference of 0.00


Drtcn: 180.00


Drtcn: 190.00


Drtcn: 200.00
 Single tier MAX: BH: 12.00 PBW: 284.85 PBL: 189.98 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -172.53 YADJ: 28.17
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\)
Single tier MAX: BH: 12.00 PBW: 284.85 PBL: 189.98 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -130.81 YADJ: -86.47
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 210.00
StkNo: 1 Stk Name:DOC1
Stack Ht: 4.12
```

 GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
 Single tier MAX: BH: 12.00 PBW: 283.40 PBL: 220.36 *Wake Effect Ht: 30.00
 Relative Coordinates of Projected Width Mid-point: XADJ: -192.83 YADJ: 14.78
 *adjusted for a Stack-Building elevation difference of 0.00
 BldNo: 1 Bld Name:BLD TierNo: 1
 StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 283.40 PBL: 220.36 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -131.82 YADJ: -90.87
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1

```

Drtcn: 220.00
```

StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 273.34 PBL: 244.05 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -207.26 YADJ: 0.95
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 273.34 PBL: 244.05 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -128.84 YADJ: -92.51
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1

```

Drtcn: 230.00


Drtcn: 240.00
 Single tier MAX: BH: 12.00 PBW: 228.86 PBL: 268.68 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -216.98 YADJ: -26.39
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12 GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\) Single tier MAX: BH: 12.00 PBW: 228.86 PBL: 268.68 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -111.33 YADJ: -87.39
*adjusted for a Stack-Building elevation difference of 0.00

Drtcn: 250.00
```

StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 195.79 PBL: 268.87 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -211.98 YADJ: - 39.07
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 195.79 PBL: 268.87 *Wake Effect Ht: 30.00
Relative Coordinates of Projected Width Mid-point: XADJ: -97.34 YADJ: -80.79
*adjusted for a Stack-Building elevation difference of 0.00
BldNo: 1 Bld Name:BLD TierNo: 1

```
Drtcn: 260.00


Drtcn: 270.00


Drtcn: 280.00
\(\begin{array}{rrrrrr} & & & \text { Stack Ht: } & 42 \\ & \text { StkNo: } 120.00\end{array}\) Single tier MAX: BH: 12.00 PBW: 153.83 PBL: 277.64 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -179.53 YADJ: -70.09
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12

GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00 Single tier MAX: BH: 12.00 PBW: 153.83 PBL: 277.64 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -59.38 YADJ: -48.90
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 290.00


Drtcn: 300.00
 Single tier MAX: BH: 12.00 PBW: 220.36 PBL: 283.40 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -156.48 YADJ: -82.64
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\)
Single tier MAX: BH: 12.00 PBW: 220.36 PBL: 283.40 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -50.83 YADJ: -21.64
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 310.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00 Single tier MAX: BH: 12.00 PBW: 244.05 PBL: 273.34 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -137.61 YADJ: -85.23
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo:
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 244.05 PBL: 273.34 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -44.16 YADJ: -6.81
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 320.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 260.32 PBL: 254.97 *Wake Effect Ht: 30.00

Relative Coordinates of Projected Width Mid-point: XADJ: -114.57 YADJ: -85.23
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
```

StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12

```
    GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\)
    Single tier MAX: BH: 12.00 PBW: 260.32 PBL: 254.97 *Wake Effect Ht: 30.00
    Relative Coordinates of Projected Width Mid-point: XADJ: -36.15 YADJ: 8.22
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 330.00


Drtcn: 340.00


Drtcn: 350.00
StkNo: 1 Stk Name:DOC1 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation 1 Ht: 30.00
Single tier MAX: BH: 12.00 PBW: 263.92 PBL: 156.78 *Wake Effect Ht: \(\quad 30.00\) Relative Coordinates of Projected Width Mid-point: XADJ: -27.84 YADJ: -68.57
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1
StkNo: 2 Stk Name:DOC2 Stack Ht: 4.12
GEP: BH: 12.00 PBW: 129.82 *Equation \(1 \mathrm{Ht}: 30.00\)
Single tier MAX: BH: 12.00 PBW: 263.92 PBL: 156.78 *Wake Effect Ht: 30.00 Relative Coordinates of Projected Width Mid-point: XADJ: -6.65 YADJ: 51.57
*adjusted for a Stack-Building elevation difference of 0.00 BldNo: 1 Bld Name:BLD TierNo: 1

Drtcn: 360.00


Dominant combined buildings: None

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents


\[
\begin{aligned}
& \text { か }
\end{aligned}
\]
\[
\begin{aligned}
& \text { へ }
\end{aligned}
\]
\[
\begin{aligned}
& \text { が }
\end{aligned}
\]

> painhing eohm Development Review Committee - Exhibit 7 - CEQA Documents


\section*{Planning Commissionn - Exhibit 1 - Devélo \(\bar{*} m e n t\) Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents}



\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{\bullet}\)
\(\stackrel{\circ}{\bullet}\)
\(\stackrel{\circ}{\bullet}\)
\(\stackrel{\circ}{\circ}+\)
*****

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents



Development Review Committee - Exhibit 7-CEQA Documents
\[
\operatorname{cov} \lambda
\]
\[
\stackrel{\rightharpoonup}{\text { ºn }}
\]
\[
3_{0}^{0}
\]
I工
I工

站

        気

        䒝
            がよかのすが
        今






        Planning Cón \({ }^{\circ}\)
        Development Review Committee - Exhibit 7-CEQA Documents




\footnotetext{
NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.
*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC)
1.54, \(3.09,5.14\),
1.54, 3.09, 5.14, 8.23, 10.80,"
}
```

*** AERMOD
*** AERMET
**MODELOPT
Plan ${ }^{*}$ ning Commission - Exhibit 1 - =Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents

```





Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents

HARP2 - HRACalc (dated 16088) 6/6/2016 12:26:32 PM - Output Log
GLCs loaded successfully
Pollutants loaded successfully
***********************************
RISK SCENARIO SETTINGS
Receptor Type: Worker
Scenario: Cancer
Calculation Method: Derived
**********************************
EXPOSURE DURATION PARAMETERS FOR CANCER
Start Age: 16
Total Exposure Duration: 25
Exposure Duration Bin Distribution
3rd Trimester Bin: 0
\(0<2\) Years Bin: 0
\(2<9\) Years Bin: 0
\(2<16\) Years Bin: 0
\(16<30\) Years Bin: 0
16 to 70 Years Bin: 25

PATHWAYS ENABLED
NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True
Soil: True
Dermal: True
Mother's milk: False
Water: False
Fish: False
Homegrown crops: False
Beef: False
Dairy: False
Pig: False
Chicken: False
Egg: False
**********************************
INHALATION
Daily breathing rate: Moderate8HR
**Worker Adjustment Factors**
Worker adjustment factors enabled: NO
**Fraction at time at home**
Planning Commission - Exhibit 1 - Development Review Committee Staff Report
Development Review Committee - Exhibit 7-CEOA Doc uments

3rd Trimester to 16 years: OFF
16 years to 70 years: OFF

\section*{**********************************}

SOIL \& DERMAL PATHWAY SETTINGS

Deposition rate (m/s): 0.05
Soil mixing depth (m): 0.01
Dermal climate: Mixed

TIER 2 SETTINGS
Tier2 not used.
**********************************

Calculating cancer risk
Cancer risk saved to: C:\Users\cbrown\Google Drive\13432 Center Street\Final Submittal\HARP\13432_25YR_CancerRisk.csv
HRA ran successfully
INH_RISK
\(1.09 \mathrm{E}-06\)
\(3.48 \mathrm{E}-07\)
\(2.68 \mathrm{E}-07\)
\(2.48 \mathrm{E}-07\)
\(2.00 \mathrm{E}-07\)
\(1.59 \mathrm{E}-07\)
\(1.49 \mathrm{E}-07\)
\(1.06 \mathrm{E}-07\)
\(1.05 \mathrm{E}-07\)
\(9.04 \mathrm{E}-08\)
\(8.85 \mathrm{E}-08\)
\(7.06 \mathrm{E}-08\)
\(\qquad\)
\begin{tabular}{|c|c|c|}
\hline CONC & RISK_SUM & SCENARIO \\
\hline 0.01766 & \(1.09 \mathrm{E}-06\) & 25YrCancerDerived \\
\hline 0.00563 & \(3.48 \mathrm{E}-07\) & 25YrCancerDerived \\
\hline 0.00433 & \(2.68 \mathrm{E}-07\) & 25YrCancerDerived \\
\hline 0.004 & \(2.48 \mathrm{E}-07\) & 25YrCancerDerived \\
\hline 0.00323 & \(2.00 \mathrm{E}-07\) & 25YrCancerDerived \\
\hline 0.00257 & \(1.59 \mathrm{E}-07\) & 25 YrCancerDerived \\
\hline 0.00241 & \(1.49 \mathrm{E}-07\) & 25YrCancerDerived \\
\hline 0.00172 & \(1.06 \mathrm{E}-07\) & 25YrCancerDerived \\
\hline 0.00169 & \(1.05 \mathrm{E}-07\) & 25YrCancerDerived \\
\hline 0.00146 & \(9.04 \mathrm{E}-08\) & 25YrCancerDerived \\
\hline 0.00143 & \(8.85 \mathrm{E}-08\) & 25 YrCancerDerived \\
\hline 0.00114 & \(7.06 \mathrm{E}-\) & \(25 Y\) rCancerDerive \\
\hline
\end{tabular}
\begin{tabular}{rlllll} 
INDEX & \multicolumn{3}{c}{ GRP1 } & GRP2 & POLID
\end{tabular} POLABBREV

\section*{Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents}

DAIRY_RISK
BEEF_RISK
CROP_RISK




SOIL_RISK

FISH_CONC
    000000000000
PASTURE_CONC
2ND_DRIVER
1ST_DRIVER
0 INHALATION
EGG_RISK
000000000000
CHICKEN_RISK

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents

HARP2 - HRACalc (dated 16088) 6/7/2016 6:33:04 PM - Output Log
GLCs loaded successfully
Pollutants loaded successfully
***********************************
RISK SCENARIO SETTINGS
Receptor Type: Resident
Scenario: Cancer
Calculation Method: Derived
**********************************
EXPOSURE DURATION PARAMETERS FOR CANCER
Start Age: -0.25
Total Exposure Duration: 30
Exposure Duration Bin Distribution
3rd Trimester Bin: 0.25
\(0<2\) Years Bin: 2
\(2<9\) Years Bin: 0
\(2<16\) Years Bin: 14
\(16<30\) Years Bin: 14
16 to 70 Years Bin: 0

PATHWAYS ENABLED
NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True
Soil: False
Dermal: False
Mother's milk: False
Water: False
Fish: False
Homegrown crops: False
Beef: False
Dairy: False
Pig: False
Chicken: False
Egg: False
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
INHALATION
Daily breathing rate: LongTerm24HR
**Worker Adjustment Factors**
Worker adjustment factors enabled: NO
**Fraction at time at home**
Planning Commission - Exhibit 1 - Development Review Committee Staff Report
Development Review Committee - Exhibit 7-CEOA Doc uments

3rd Trimester to 16 years: OFF
16 years to 70 years: ON
**********************************
TIER 2 SETTINGS
Tier2 not used.

Calculating cancer risk
Cancer risk saved to: C:\Users\cbrown\Google Drive\13432 Center Street\Final Submittal\HARP\13432_30YR_CancerRisk.csv
HRA ran successfully

\[
\begin{aligned}
& \text { 笕 } \\
& \text { ( }
\end{aligned}
\]


\section*{Pla nning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents}


Pla nning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents

FISH_CONC
PASTURE_CONC

IST_DRIVER
0 INHALATION
\begin{tabular}{l}
\(\stackrel{\rightharpoonup}{n}\) \\
\(\stackrel{N}{c}\) \\
O \\
\hline
\end{tabular}
CHICKEN_RISK
\(\stackrel{\vee}{\sim}\)
\(\stackrel{\sim}{\infty}\)
\(\stackrel{\circ}{0}\)

\section*{Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents}

\section*{Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents}

HARP2 - HRACalc (dated 16088) 6/6/2016 12:31:17 PM - Output Log
GLCs loaded successfully
Pollutants loaded successfully
***********************************
RISK SCENARIO SETTINGS
Receptor Type: Population
Scenario: Cancer
Calculation Method: Derived
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
EXPOSURE DURATION PARAMETERS FOR CANCER
Start Age: -0.25
Total Exposure Duration: 70
Exposure Duration Bin Distribution
3rd Trimester Bin: 0.25
\(0<2\) Years Bin: 2
\(2<9\) Years Bin: 0
\(2<16\) Years Bin: 14
\(16<30\) Years Bin: 0
16 to 70 Years Bin: 54

\section*{PATHWAYS ENABLED}

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True
Soil: False
Dermal: False
Mother's milk: False
Water: False
Fish: False
Homegrown crops: False
Beef: False
Dairy: False
Pig: False
Chicken: False
Egg: False
**********************************
INHALATION
Daily breathing rate: RMP
**Worker Adjustment Factors**
Worker adjustment factors enabled: NO
**Fraction at time at home**
Planning Commission - Exhibit 1 - Development Review Committee Staff Report
Development Review Committee - Exhibit 7-CEOA Doc uments

3rd Trimester to 16 years: OFF
16 years to 70 years: OFF
**********************************
TIER 2 SETTINGS
Tier2 not used.

Calculating cancer risk
Cancer risk saved to: C: \Users\cbrown\Google Drive\13432 Center Street\Final
Submittal\HARP\13432_70YR_CancerRisk.csv
HRA ran successfully




 9901 DieseIExhPM 9901 DieselExhPM 9901 DieselExhPM 9901 DieselExhPM 9901 DieselExhPM 9901 DieselExhPM 9901 DieselExhPM



 9901 DieselExhPM 9901 DieselExhPM












 OIV甘NヨJS
 \(\frac{\stackrel{v}{n}}{\sim}\)


    N
N
尔

Pla nning Commission－Exhibit 1 －Development Review Committee Staff Report Development Review Committee－Exhibit 7－CEQA Documents
 9901 DieselExhPM 9901 DieselExhPM










```

0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000

```

0000000000000000000000000000000000000

0000000000000000000000000000000000000

0000000000000000000000000000000000000

0000000000000000000000000000000000000

0000000000000000000000000000000000000

0000000000000000000000000000000000000

0000000000000000000000000000000000000

0000000000000000000000000000000000000

0000000000000000000000000000000000000

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents


0000000000000000000000000000

0000000000000000000000000000

```

O000000000000000000000000000000000000000

```


Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents

HARP2 - HRACalc (dated 16088) 6/6/2016 3:59:46 PM - Output Log
GLCs loaded successfully
Pollutants loaded successfully
***********************************
RISK SCENARIO SETTINGS
Receptor Type: Population
Scenario: NCChronic
Calculation Method: Derived
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
EXPOSURE DURATION PARAMETERS FOR CANCER
**Exposure duration are only adjusted for cancer assessments**
**********************************

\section*{PATHWAYS ENABLED}

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True
Soil: False
Dermal: False
Mother's milk: False
Water: False
Fish: False
Homegrown crops: False
Beef: False
Dairy: False
Pig: False
Chicken: False
Egg: False
************************************

\section*{INHALATION}

Daily breathing rate: LongTerm24HR
**Worker Adjustment Factors**
Worker adjustment factors enabled: NO
**Fraction at time at home**
NOTE: Exposure duration (i.e., start age, end age, ED, \& FAH) are only adjusted for cancer assessments.
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
TIER 2 SETTINGS
Tier2 not used.

Calculating chronic risk
Chronic risk saved to: C:\Users\cbrown\Google Drive\13432 Center Street\Final
Pla nning Commission - Exhibit 1 - Development Review Committee Staff Report
Development Review Committee - Exhibit 7 - CEQA Documents

Submittal\HARP\13432_CHR_NCChronicRisk.csv
HRA ran successfully



\begin{tabular}{rrl}
53 & 467091 & 3764494 \\
34 & 466891 & 3764394 \\
119 & 467575 & 3763756 \\
59 & 467091 & 3763894 \\
48 & 466991 & 3763994 \\
70 & 467191 & 3763794 \\
37 & 466891 & 3764094 \\
25 & 466791 & 3764294 \\
72 & 467291 & 3764594 \\
107 & 467110 & 3763852 \\
109 & 467142 & 3764560 \\
43 & 466991 & 3764494 \\
62 & 467191 & 3764594 \\
82 & 467391 & 3764594 \\
105 & 466818 & 3764404 \\
24 & 466791 & 3764394 \\
26 & 466791 & 3764194 \\
106 & 466906 & 3764000 \\
60 & 467091 & 3763794 \\
102 & 466721 & 3764309 \\
104 & 466773 & 3764400 \\
38 & 466891 & 3763994 \\
49 & 466991 & 3763894 \\
92 & 467491 & 3764594 \\
52 & 467091 & 3764594 \\
27 & 466791 & 3764094 \\
33 & 466891 & 3764494 \\
110 & 467244 & 3763650 \\
12 & 467591 & 3764594 \\
5 & 466691 & 3764294 \\
71 & 467291 & 3764694 \\
103 & 466724 & 3764152 \\
4 & 466691 & 3764394 \\
50 & 466991 & 3763794 \\
42 & 466991 & 3764594 \\
6 & 466691 & 3764194 \\
39 & 466891 & 3763894 \\
61 & 467191 & 3764694
\end{tabular}

Planning Commission - Exhibit 1 - Development Review C̃ommittee Staff Report Development Review Committee - Exhibit 7 -CEQA Documents


Planning Colmmission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7-CEQA Documents
GENERAL
\(\qquad\) \begin{tabular}{l}
8 \\
\hline \\
岂 \\
0 \\
0
\end{tabular}
 \begin{tabular}{l} 
O \\
岂 \\
O \\
\hline
\end{tabular} \begin{tabular}{l}
8 \\
\hline \\
W \\
\hline 0 \\
0
\end{tabular}
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\) 앙 \(00+3000^{\circ}\) \(00+3000^{\circ}\) \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{3}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l} 
O \\
岂 \\
O \\
\hline
\end{tabular} \(00+3000^{\circ}\) \(\circ\)
\(\stackrel{+}{4}\)
＋
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular}
 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
+ \\
\({ }_{3}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{0}\) \\
\hline
\end{tabular} \(00+300 \cdot 0\) \(00+700 \cdot 0\) \begin{tabular}{l}
\(\circ\) \\
\hline \\
\(\stackrel{\rightharpoonup}{0}\) \\
\hline- \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} 앙
 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{0}\)
0 \begin{tabular}{l}
\(\circ\) \\
+ \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline ＋ \\
W \\
0 \\
0
\end{tabular} \(0.00 \mathrm{E}+00\) BLOOD ODOR
 \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(\begin{array}{lll}0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00 \\ 0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00\end{array}\) \(00+300 \cdot 000+300 \cdot 0\) \(00+300^{\circ} 000+300^{\circ} 0\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(\begin{array}{ll}0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00 \\ 0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00\end{array}\) 0．00E＋00 0．00E＋00 \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\)




 \(00+300 \cdot 000+300^{\circ} 0\)

 \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
0 \\
0 \\
0 \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}







 OONヨ \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) 0．00E＋00 0.00 E +00 0．00E＋00 0．00E＋00 \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) 0．00E＋00 \(0.00 \mathrm{E}+00\) 0．00E \(+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00\) 0．00E＋00 0．00E＋00 \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) ．00 +00 \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) 0．00E＋00 0．00E＋00 \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+000.00 \mathrm{E}+00\) 0．00E＋00 0．00E＋00 0．00E＋00 0．00E＋00 \begin{tabular}{l} 
O \\
\hline \\
\hline
\end{tabular}

 Deve〒opment Review Committee－Exhibit 7－CEQA Documents

\section*{\(0.00 \mathrm{E}+00\)}

\(0.00 \mathrm{E}+00 \quad 2.28 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+002.28 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+002.26 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+002.16 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+002.14 \mathrm{E}-040.00 \mathrm{E}+000.00 \mathrm{E}+00\)
 \(0.00 \mathrm{E}+00 \quad 2.04 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+00 \quad 2.02 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(00+\exists 00^{\circ} 000+\exists 00^{\circ} 0\) t0-386. \(00+300^{\circ} 0\) \(00+\exists 00^{\circ} 000+\exists 00^{\circ} 0\) t0-ヨZ6' \(100+\exists 00^{\circ} 0\) \(00+3000^{\circ} 000+\exists 0000\) เ0-388' \(100+3000\) \(00+\exists 00^{\circ} 000+\exists 000^{\circ}\) †0-Э08' \(\mathrm{I} 00+\exists 000^{\circ} 0\) \(00+\exists 000^{\circ} 000+\exists 00 \cdot 0\) †0-Э08' \(\mathrm{L} 00+\exists 00 \cdot 0\) \(0.00 \mathrm{E}+00 \quad 1.78 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+00 \quad 1.76 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\) \(0.00 \mathrm{E}+00 \quad 1.68 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\)



 \(0.00 \mathrm{E}+00 \quad 1.34 \mathrm{E}-04 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00\)
 \(0.00 \mathrm{E}+00 \quad 1.14 \mathrm{E}-04 \quad 0.00 \mathrm{E}+000.00 \mathrm{E}+00\) Development Review Committee - Exhibit 7-CEQA Documents


Plannting Commission - Exhibit 1 - Development Review Committee Staff Report

0.00E+00 -

 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{0}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{+}{+}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{1}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


 웅
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{\circ}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\(\stackrel{1}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{1}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \begin{tabular}{l}
8 \\
\hline \\
\hline \\
\hline 0 \\
0 \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
山 \\
O \\
0
\end{tabular} 웅 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular}


\section*{\(0.00 \mathrm{E}+00\)}
\(0.00 \mathrm{E}+00\) \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} 0.00E+00 \begin{tabular}{c}
\(\circ\) \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\(\stackrel{\rightharpoonup}{4}\) \\
\hline
\end{tabular} \(\stackrel{\circ}{\circ}\) \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} . \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{0}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{1}{\circ}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\(\stackrel{1}{O}\) \\
0 \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{\circ}\)
0 앙 운 \begin{tabular}{l}
8 \\
\hline \\
O \\
0 \\
0
\end{tabular} \begin{tabular}{l}
8 \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{0}\) \\
\hline
\end{tabular} \(\stackrel{\circ}{\circ}\)
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{\circ}{4}\) \\
\(\stackrel{1}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline 0 \\
\hline-
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}
 \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} ㅇ \begin{tabular}{l} 
O \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{0}\) \\
\hline-
\end{tabular}

\section*{\(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{4}{0}\)
0}
\(\square\)
 \begin{tabular}{l}
\(\circ\) \\
\hline O \\
O \\
O
\end{tabular} \begin{tabular}{l}
8 \\
\hline 1 \\
O \\
0 \\
0 \\
0
\end{tabular} 옹 \begin{tabular}{l}
\(\circ\) \\
\hline \\
\(\stackrel{+}{0}\) \\
0 \\
0
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{0}\)
0 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{0}\)
0
 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{\circ}\)
0 \(\begin{array}{r}8 \\ \hline \\ \stackrel{y}{4} \\ 0 \\ 0 \\ 0 \\ \hline\end{array}\) \begin{tabular}{l}
8 \\
\hline \\
\(\stackrel{1}{0}\) \\
0 \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{1}{0}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{0}{0}\)
0
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{1}{0}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
0 \\
0 \\
0
\end{tabular}
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{1}{0}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0




 \begin{tabular}{l}
\(\circ\) \\
\hline O \\
W \\
O
\end{tabular}


 \(0.00 \mathrm{E}+00\) \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline-
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{\circ}{4}\)
\(\stackrel{\rightharpoonup}{0}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}
 \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
0 \\
\hline
\end{tabular}
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\(\stackrel{3}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\(\stackrel{\rightharpoonup}{0}\) \\
\hline
\end{tabular} O 8
+
W
0
0 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} 오
 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} 8
\(\stackrel{+}{4}\)
\(\stackrel{1}{0}\)
0
 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} 앙 \begin{tabular}{l}
8 \\
\(\stackrel{+}{4}\) \\
0 \\
0 \\
\hline
\end{tabular} 8
+
W
0
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{1}{0}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{O}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}



\begin{tabular}{l}
\(0.00 \mathrm{E}+00\) \\
\hline
\end{tabular}






 0.00E +00 INHALATION 0.00E +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION
 O.OOE +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION 0.00E +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION 0.00E +00 INHALATION NOII \(\forall 7 \forall H N I ~ 00+300^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+300^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+3000\) 0.00E +00 INHALATION


 O.OOE +00 INHALATION O.OOE +00 INHALATION NOILVTVHNI 00 \(+300^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+\exists 00^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+\exists 00^{\circ} 0\) 0.00E +00 INHALATION 0.00E+00 INHALATION 0.00E+00 INHALATION 0.00E+00 INHALATION \(0.00 \mathrm{E}+00\) INHALATION 0.00E+00 INHALATION

 O.OOE +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION


\section*{\(0.00 \mathrm{E}+00\)}


 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular}

 \(\circ\)
\(\stackrel{O}{4}\)
\(\stackrel{1}{0}\)
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\hline \\
0
\end{tabular} \(\begin{array}{r}\circ \\ \stackrel{8}{4} \\ \stackrel{3}{0} \\ \hline\end{array}\) \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\(\stackrel{1}{0}\) \\
\hline
\end{tabular} 8
\(\stackrel{+}{4}\)
\(\stackrel{3}{8}\)
0
 \(\circ\)
\(\stackrel{8}{4}\)
\(\stackrel{1}{\circ}\)


 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\(\stackrel{0}{0}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}
 \(\circ\)
\(\stackrel{\circ}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{1}{4}\)
0
0
0 \(\circ\)
운
\(\stackrel{4}{4}\)
\(\mathrm{O}_{\dot{\circ}}\)
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline 0
\end{tabular} \(\circ\)
\(\stackrel{8}{4}\)
\(\stackrel{1}{0}\)
0 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\) \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}

 0.00E +00 INHALATION 0.00E +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION
 O.OOE +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION 0.00E +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION 0.00E +00 INHALATION NOII \(\forall 7 \forall H N I ~ 00+300^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+300^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+3000\) 0.00E +00 INHALATION


 O.OOE +00 INHALATION O.OOE +00 INHALATION NOILVTVHNI 00 \(+300^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+\exists 00^{\circ} 0\) NOII \(\forall 7 \forall H N I ~ 00+\exists 00^{\circ} 0\) 0.00E +00 INHALATION 0.00E+00 INHALATION 0.00E+00 INHALATION 0.00E+00 INHALATION \(0.00 \mathrm{E}+00\) INHALATION 0.00E+00 INHALATION

 O.OOE +00 INHALATION 0.00E+00 INHALATION 0.00E +00 INHALATION


\section*{\(0.00 \mathrm{E}+00\)}


 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular}

 \(\circ\)
\(\stackrel{O}{4}\)
\(\stackrel{1}{0}\)
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\hline \\
0
\end{tabular} \(\begin{array}{r}\circ \\ \stackrel{8}{4} \\ \stackrel{3}{0} \\ \hline\end{array}\) \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\(\stackrel{1}{0}\) \\
\hline
\end{tabular} 8
\(\stackrel{+}{4}\)
\(\stackrel{3}{8}\)
0
 \(\circ\)
\(\stackrel{8}{4}\)
\(\stackrel{1}{\circ}\)


 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{8}{4}\) \\
\(\stackrel{0}{0}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{1}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}
 \(\circ\)
\(\stackrel{\circ}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\)
0 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular} \(\circ\)
\(\stackrel{1}{4}\)
0
0
0 \(\circ\)
운
\(\stackrel{4}{4}\)
\(\mathrm{O}_{\dot{\circ}}\)
 \begin{tabular}{l}
\(\circ\) \\
\(\stackrel{+}{4}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline 0
\end{tabular} \(\circ\)
\(\stackrel{8}{4}\)
\(\stackrel{1}{0}\)
0 \(\circ\)
\(\stackrel{+}{4}\)
\(\stackrel{\rightharpoonup}{\circ}\) \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}




This Page Intentionally Left Blank

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents```


[^0]:    Plaínning Commission - Exhibit 1 - Development Review Committealth Riskaffecsment Rert Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

[^1]:    Pla²nning Commission - Exhibit 1 - Development Review Committealth Riskaffecsment Report Development Review Committee - Exhibit 7-CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

[^2]:    Planning Commission - Exhibit 1 - Development Review Commitalth Ristassessment
     Development Review Committee - Exhibit 7-CEQA Documents

[^3]:     Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3-City Planning Commission Report and Exhibits - April 05, 2018

[^4]:    18 .
    Pla ñning Commission - Exhibit 1 - Development Review Committee staff Report Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3-City Planning Commission Report and Exhibits - April 05, 2018

[^5]:    Plannning Commission - Exhibit 1 - Development Review Commititealth Ristaffessment Development Review Committee - Exhibit 7-CEQA Documents

[^6]:    Plannning Commission - Exhibit 1 - Development Review Commititealth Ristassessment Development Review Committee - Exhibit 7-CEQA Documents Attachment 3-City Planning Commission Report and Exhibits - April 05, 2018

