Center Street Commerce Building Air Quality & Climate Change Assessment

March 2016 (13432)

Prepared for:

Transition Properties, LP PO Box 1010 Blue Jay, California 92317

Prepared by:

MIG 1500 Iowa Avenue, Suite 110 Riverside, California 92507

Rlanning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents

Center Street Commerce Building Air Quality & Climate Change Assessment

March 2016

City of Riverside

Planning Commission - Exhibit 1 - Development Review Committee Development Review Committee - Exhibit 7 - CEQA Documents	Staff Report

Table of Contents

_			
1	Execut	ive Summary	1
	1.1	Project Description	
	1.2	Air Quality	
	1.3	Climate Change	
	1.4	Mitigation Measures	
2		iction	
		nmental Setting	
٠	3.1	Climate	
	3.2	Regional Air Quality	
	3.3	Non-Attainment Status	
	3.4	Local Air Quality	
	3.5	Sensitive Receptors	
	3.6	Local Transportation	
	3.7	Climate Change	
		Defining Climate Change	
		Climate Change and California	
4		tory Framework	
	4.1	Clean Air Act	
	4.2	California Clean Air Act	
	4.3	2012 Air Quality Management Plan	۷1
	4.4	SCAQMD Rule Book	22
	4.5	Executive Order S-3-05	
	4.6	Executive Order B-30-15	
	4.7	California Global Warming Solutions Act	22
	4.8	Sustainable Communities and Climate Protection Act	
	4.9	Air Resources Board Scoping Plan	23
	4.10	Water Conservation in Landscaping Act	
	4.11	California Green Building Standards	
		t Description	
6		ality Impact Analysis	
	6.1	Thresholds of Significance	
	6.2	AQMP Consistency	
	6.3	Pollutant Emissions	
		Construction	
	6.3.2 (Operational and Area Sources	
	6.4	Sensitive Receptors	33
	6.4.1 L	Localized Significance Thresholds	33
	6.4.2 (Carbon Monoxide Hotspots	35
	6.5	Odors	35
	6.6	Cumulative Impacts	35
	6.6.1 (Cumulative Construction Impacts	35
	6.6.2 (Cumulative Operational Impacts	35
7		e Change Impact Analysis	
	7.1	Thresholds of Significance	
	7.2	Direct and Indirect Emissions	
		Short-Term Emissions	
		ong-Term Emissions	
		Greenhouse Gas Emissions Inventory	
	7.2.0	Greenhouse Gas Emissions Reduction Planning	38

8 Mitigation Measures	43
8 Mitigation Measures	45
List of Tables	
Table 1 Ambient Air Quality Standards	6
Table 2 South Coast Air Basin Attainment Status	
Table 3 2011-2013 Local Air Quality	9
Table 4 2011-2013 Air Quality Standards Exceedance	9
Table 5 Global Warming Potential (GWP) of Greenhouse Gases (GHG)	13
Table 6 Scoping Plan Measures	25
Table 7 CALGREEN Requirements	
Table 8 SCAQMD Maximum Daily Emissions Thresholds (lbs/days)	
Table 9 Daily Construction Emissions (lbs/day)	
Table 10 Daily Operational Emissions (lbs/day)	33
Table 11 Localized Significance Threshold Analysis for Construction (lbs/day)	
Table 12 Localized Significance Thresholds for Operations)	
Table 13 Construction Greenhouse Gas Emissions	
Table 14 Operational Greenhouse Gas Emissions	
Table 15 Greenhouse Gas Emissions Inventory	
Table 16 Scoping Plan Consistency Summary	40
List of Exhibits	
Exhibit 1 Regional Context and Vicinity Map	17
Exhibit 2 Radius Map	
Exhibit 3 Site Plan	

Appendices

Appendix A CalEEMod Results Appendix B EMFAC2014 Results

1 Executive Summary

Construction-related and operational emissions of criteria pollutants were modeled and analyzed for the proposed Center Street Commerce Building project. The building is located south of Center Street and north of Placentia Lane in the City of Riverside. This report also analyzes the project's consistency with the South Coast Air Quality Management District (SCAQMD) 2012 Air Quality Management Plan (AQMP) for the South Coast Air Basin. Cumulative impacts were analyzed using the methodology provided by the 1993 SCAQMD California Environmental Quality Act (CEQA) Air Quality Handbook. Please note that a Health Risk Assessment (HRA) was prepared for this project under separate cover.

Additionally, this report models and analyzes construction- and operation-related emissions of greenhouse gases from the proposed project. This analysis utilizes guidance provided in the California Air Pollution Control Officers Association (CAPCOA) CEQA and Climate Change white paper and the Quantifying Greenhouse Gas Mitigation Measures handbook. Modeling of emissions utilizes the California Emissions Estimator Model (CalEEMod) v 2013.2.2.

1.1 Project Description

The project includes the construction of a 308,000-square-foot building on 15.63 acres located south of Center Street and north of Placentia Lane in the City of Riverside, California. The building includes 110,591 square feet of landscaping, the potential for up to 282 parking stalls, and 47 loading docks. There is no tenant for the proposed building, thus, the operational components of the project are speculative at this time. The City of Riverside recommended consideration of a "manufacturing" use as a worst-case, conservative approach to assessing operational impacts. The building has been treated as such herein, consistent with the project traffic impact analysis and health risk assessment. Project design features related to pollutant emissions includes use of low-VOC coatings on interiors and exterior surface of 37 grams per liter or less.

1.2 Air Quality

The project will not result in substantial emissions of nitrogen oxides, volatile organic compounds, or particulate matter and would not exceed the regional growth assumptions used in the Air Quality Management Plan (AQMP). The project will not individually cause or cumulatively contribute to an air quality standard violation. Emissions of carbon monoxide and localized construction emissions will not substantially impact sensitive receptors in vicinity of the project. The project will not emit substantial amounts of diesel particulate matter due to the operation of heavy-duty trucks on the project site. The project will not expose a substantial number of people to odors.

1.3 Climate Change

Greenhouse gas emissions will not exceed the annual 10,000 metric ton carbon dioxide equivalent threshold established by the South Coast Air Quality Management District and will not conflict with state greenhouse gas emissions strategies.

1.4 Mitigation Measures

None required.

2 Introduction

This report models and analyzes construction- and operation-related emissions of criteria air pollutants and greenhouse gas emissions from the proposed Center Street Commerce Building project totaling 308,000 square feet on 15.63 acres located in City of Riverside, California.

The air quality analysis provided herein utilizes guidance provided in the South Coast Air Quality Management District (SCAQMD) the 1993 California Environmental Quality Act (CEQA) Air Quality handbook as amended and supplemented (http://www.aqmd.gov/ceqa/hdbk.html). Please note that analysis of toxic air contaminants (TAC) is provided under separate cover. Pollutant emissions were assessed utilizing the following:

- California Emissions Estimator Model (CalEEMod) v 2013.2.2
- EMFAC2014
- Final Localized Significance Thresholds Methodology

The climate change analysis provided herein utilizes guidance provided in the California Air Pollution Control Officers Association (CAPCOA) *CEQA* and *Climate Change* white paper and the *Quantifying Greenhouse Gas Mitigation Measures* handbook. Modeling of greenhouse gas emissions utilizes the California Emissions Estimator Model (CalEEMod) v 2013.2.2.

This report has been prepared utilizing project-specific characteristics where available. In those instances, where project-specific data is not available, the analysis has been supplemented by model defaults or other standardized sources of comparable data. In any case where non-project defaults or other data have been used, a "worst-case" scenario was developed to ensure a conservative estimate of emissions.

This report has been prepared for use by the Lead Agency to assess potential project-related air quality impacts in compliance with the State CEQA Statutes and Guidelines, particularly in respect to the air quality issues identified in Appendix G of the State CEQA Guidelines. This report does not make determinations of significance pursuant to CEQA because such determinations are required to be made solely in the purview of the Lead Agency.

This document has been reviewed in accordance with the *Table 7-2, Checklist for an Air Quality Analysis Section* of the SCAQMD Air Quality Handbook for quality control purposes.

This report was prepared by Christopher Brown (Director of Environmental Services), Olivia Chan (Associate Analyst), and Cameron Hile (Assistant Analyst) of MIG, Inc. under contract with Transitions Properties, LP.

	/OJC/	
Christopher Brown Director of Environmental Services	Olivia Chan Associate Analyst	
/CWH/	_	
Cameron Hile Assistant Analyst		

3.1 Climate

The project is located in the City of Riverside. The City of Riverside and the broader Inland Empire are defined by a semi-arid, Mediterranean climate with mild winters and warm summers. Annual rainfall averages 9.86 inches with the rainy season occurring during the winter. The coolest month of the year is December with an average monthly low of 41.3° Fahrenheit (F). The warmest month is August with an average monthly high of 94.4° F. Riverside is located at an elevation of approximately 700 feet to 1,400 feet above mean sea level (AMSL). The project site is located at an approximate elevation of 830 AMSL. Wind generally blows from the west.³

3.2 Regional Air Quality

The proposed project is located within the South Coast Air Basin (Basin).⁴ The basin includes Orange County and the non-desert portions of Los Angeles, San Bernardino, and Riverside Counties. The San Gabriel, San Bernardino, and San Jacinto Mountains bound the Basin to the north and east that trap ambient air and pollutants within the Los Angeles and Inland Empire valleys below. The South Coast Air Quality Management District (SCAQMD) manages the Basin. Pursuant to the California Clean Air Act (CCAA), SCAQMD is responsible for bringing air quality within the Basin into conformity with federal and State air quality standards by reducing existing emission levels and ensuring that future emission levels meet applicable air quality standards. SCAQMD works with federal, State, and local agencies to reduce pollutant sources through the development of rules and regulations.

Both California and the federal government have established health-based ambient air quality standards (AAQS) for seven air pollutants (known as *criteria pollutants*). These pollutants include ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), inhalable particulate matter with a diameter of 10 microns or less (PM₁₀), fine particulate matter with a diameter of 2.5 microns or less (PM_{2.5}), and lead (Pb). The State has also established AAQS for the additional pollutants of visibility reducing particles, sulfates, hydrogen sulfide, and vinyl chloride. The AAQS are designed to protect the health and welfare of the populace within a reasonable margin of safety. Where the State and federal standards differ, State AAQS are more stringent than federal AAQS. Federal and State standards are shown in Table 1 (Ambient Air Quality Standards). A brief description of each criteria pollutant is provided below.

Ozone. Ozone is a pungent, colorless, and highly reactive gas that forms from the atmospheric reaction of organic gases with nitrogen oxides in the presence of sunlight. Ozone is most commonly associated with smog. Ozone precursors such as reactive organic gases (ROG) and oxides of nitrogen (NO_X) are released from mobile and stationary sources. Ozone is a respiratory irritant and can cause cardiovascular diseases, eye irritation, and impaired cardiopulmonary function. Ozone can also damage building materials and plant leafs.

Carbon Monoxide. Carbon monoxide is primarily emitted from vehicles due to the incomplete combustion of fuels. Carbon monoxide has wide ranging impacts on human health because it combines with hemoglobin in the body and reduces the amount of oxygen transported in the bloodstream. Carbon monoxide can result in reduced tolerance for exercise, impairment of mental function, impairment of fetal development, headaches, nausea, and death at high levels of exposure.

Nitrogen Dioxide. Nitrogen dioxide and other oxides of nitrogen (NO_X) contribute to the formation of smog and results in the brownish haze associated with it. They are primarily emitted from motor vehicle exhaust but can be omitted from other high-temperature stationary sources. Nitrogen oxides can aggravate respiratory illnesses, reduce visibility, impair plant growth, and form acid rain.

Table 1
Ambient Air Quality Standards

Pollutant	Averaging Time	California	a Standards ¹		National Sta	ndards ²
		Concentration ³	Method ⁴	Primary ^{3,5}	Secontary ^{3,6}	Method ⁷
Ozone (O ₃)	1 Hour	0.09 ppm (180 µg/m³)	Ultraviolet Photometry	-	Same as Primary	Ultraviolet Photometry
Ozone (O3)	8 Hour	0.07 ppm (137 µg/m³)	Olitaviolet i fiotofficti y	0.075 ppm (147 µg/m³)	Standard	Ollaviolet i Holometi y
Respirable Particulate	24 Hour	50 µg/m³	Gravimetric or Beta	150 µg/m³	Same as Primary	Inertial Separation and
Matter (PM ₁₀) ⁸	Annual Arithmetic Mean	20 µg/m³	Attenuation	-	Standard	Gravimetric Analysis
Fine Particulate	24 Hour	-	-	35 µg/m³	Same as Primary Standard	Inertial Separation and
Matter(PM _{2.5}) ⁸	Annual Arithmetic Mean	12 µg/m³	Gravimetric or Beta Attenuation	12 µg/m³	15 µg/m³	Gravimetric Analysis
Carbon	1 Hour	20 ppm (23 mg/ m³)	Non-Dispersive	35 ppm (40 mg/m³)	-	Non-Dispersive Infrared
Monoxide (CO)	8 Hour	9.0 ppm (10mg/m³)	Infrared Photometry (NDIR)	9 ppm (10 mg/m³)	-	Photometry (NDIR)
(00)	8 Hour (Lake Tahoe)	6 ppm (7 mg/ m³)	(NDIIV)	-	-	
Nitrogen	Annual Arithmetic Mean	0.03 ppm (57 µg/m³)	Gas Phase	0.053 ppm (100 µg/m³)	Same as Primary Standard	Gas Phase
Dioxide (NO ₂)	1 Hour	0.18 ppm (339 µ g/m³)	Chemiluminescence	100 ppb (188 µg/m³)	-	Chemiluminescence
	1 Hour	0.25 ppm (655 µg/m³)		75 ppb (196 µg/m³)	-	
Sulfur Dioxide	3 Hour	-	Ultraviolet	-	0.5 ppm (1,300 µg/m³)	Ultraviolet Fluorescence; Spectrophotometry
(SO ₂)	24 Hour	0.04 ppm (105 µg/m³)	Fluorescence	0.14 ppm (for certain areas) ¹⁰	-	(Pararosaniline Method)
	Annual Arithmetic Mean	-		0.030 ppm (for certain areas) ¹⁰	-	
	30 Day Average	1.5 µg/m ³		-	-	
Lead ^{11,12}	Calendar Quarter	-	Atomic Absorption	1.5 µg/m³ (for certain areas) ¹²	Same as Primary	High Volume Sampler and Atomic Absorption
	Rolling 3-Month Average ¹⁰	-		0.15 µg/m³	Standard	, ttoring / tager piloti
Visibility Reducing Particles ¹³	8 Hour	See footnote 13	Beta Attenuation and Transmittance through Filter Tape		No	
Sulfates	24 Hour	25 µg/m³	Ion Chromatography		Federa	al
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m³)	Ultraviolet Fluorescence		Standar	
Vinyl Chloride ¹¹	24 Hour	0.01 ppm (26 µg/m³)	Gas Chromatography		3.011001	

Source: ARB, October 2015

PPM, parts per million

µg/m3, micrograms per cubic meter

Footnotes for this table can be found at http://www.arb.ca.gov/research/aags/aags2.pdf

Particulate Matter. Particulate matter is a complex mixture of small-suspended particles and liquid droplets in the air. Particulate matter between ten microns and 2.5 microns is known as PM_{10} , also known as coarse or inhalable particulate matter. PM_{10} is emitted from diverse sources including road dust, diesel soot, combustion products, abrasion of tires and brakes, construction operations, and windstorms. PM_{10} can also be formed secondarily in the atmosphere when NO_2 and SO_2 react with ammonia. Particulate matter less than 2.5 microns in size are called $PM_{2.5}$ or fine particulate matter. $PM_{2.5}$ is primarily emitted from point

sources such as power plants, industrial facilities, automobiles, wood-burning fireplaces, and construction sites. Particulate matter is deposited in the lungs and cause permanent lung damage, potentially resulting in lung disease and respiratory symptoms like asthma and bronchitis. Particulate matter has also been linked to cardiovascular problems such as arrhythmia and heart attacks. Particulate matter can also interfere with the body's ability to clear the respiratory tract and can act as a carrier of absorbed toxic substances. Particulate matter causes welfare issues because it scatters light and reduces visibility, causes environmental damage such as increasing the acidity of lakes and streams, and can stain and damage stone, such as that applied in statues and monuments.

Sulfur Dioxide. Sulfur dioxide and other oxides of sulfur (SO_X) are reactive gases emitted from the burning of fossil fuels, primarily from power plants and other industrial facilities.⁵ Other less impacting sources include metal extraction activities, locomotives, large ships, and off-road equipment. Human health impacts associated with SO_X emissions include bronchoconstriction and increased asthma symptoms.

Lead. Lead is primarily emitted from metal processing facilities (i.e. secondary lead smelters) and other sources such as manufacturers of batteries, paints, ink, ceramics, and ammunition. Historically, automobiles were the primary sources before lead was phased out of gasoline. The health effects of exposure to lead include gastrointestinal disturbances, anemia, kidney diseases, and potential neuromuscular and neurologic dysfunction. Lead is also classified as a probable human carcinogen.

3.3 Non-Attainment Status

Air pollution levels are measured at monitoring stations located throughout the Basin. Areas that are in nonattainment with respect to criteria pollutants are required to prepare plans and implement measures that will bring the region into attainment. Table 2 (South Coast Air Basin Attainment Status) summarizes the attainment status in the Basin for the criteria pollutants. The Basin is currently in nonattainment status for ozone and inhalable and fine particulate matter.

Pollution problems in the Basin are caused by emissions within the area and the specific meteorology that promotes pollutant concentrations. Emissions sources vary widely from smaller sources such as individual residential water heaters and short-term grading activities to extensive operational sources including long-term operation of electrical power plants and other intense industrial use. Pollutants in the Basin are blown inward from coastal areas by sea breezes from the Pacific Ocean and are prevented from horizontally dispersing due to the surrounding mountains. This is further complicated by atmospheric temperature inversions that create inversion layers. The inversion layer in Southern California refers to the warm layer of air that lies over the cooler air from the Pacific Ocean. This is strongest in the summer and prevents ozone and other pollutants from dispersing upward. A ground-level surface inversion commonly occurs during winter nights and traps carbon monoxide emitted during the morning rush hour.

Table 2
South Coast Air Basin Attainment Status

Pollutant	Federal	State
O ₃ (1-hr)		Nonattainment
O ₃ (8-hr)	Nonattainment	Nonattainment
PM ₁₀	Nonattainment	Nonattainment
PM _{2.5}	Nonattainment	Nonattainment
CO	Attainment	Attainment
NO ₂	Attainment	Nonattainment
SO ₂	Attainment	Attainment
Pb	Nonattainment	Nonattainment
VRP		Unclassified
SO ₄		Attainment
H ₂ S		Unclassified
Sources: ARB 20	14	

3.4 Local Air Quality

The City of Riverside is located within the South Coast Air Basin (SCAB), which is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD). The project site is located in Area 23. Air quality in Area 23 is monitored in Riverside. Air monitoring results for station 4144 over the last three years of available data is summarized in Table 3 (2011-2013 Local Air Quality).6 7 8 Table 4 (2011-2013 Air Quality Standards Exceedance) summarizes the number of days for each monitoring year that air quality standards were exceeded. Based on the 2011-2013 air quality monitoring data, ozone pollution did not exceed the State-8-hour standard or the Federal 8-hour standard in 2013. The Metropolitan Riverside County area experiences ozone pollution and has exceeded the State 8-hr maximum concentration for 70 days in 2012 and 92 days in 2011. This is not necessarily due to local production of ozone, but due to how ozone forms and travels over the Basin. Ozone precursors are emitted primarily in the urban centers of the Basin such as Los Angeles. Ozone does not form immediately but rather forms over the day. This combined with prevailing winds blowing ozone precursors inland cause the highest concentrations of ozone in the Basin to occur in Riverside County and mountain regions. The County also experiences particulate matter pollution, with approximately 19 percent of PM₁₀ samples in year 2012 exceeding the State standard.

~	:
۲.	5
\angle	
(1343	
-	_
٠	Ī
	7
\sim	7
~	Ξ,
-:≥	=
7	3
-	<
-	2
-	٥
α	١
	•
ď	١
~	ς
JUG	•
7	₹
7	2
~	Ξ,
≥	2
nne	
>	:
	,
ς,	١
_	_
+	
Ö	٥
ď	١
2	′
+	3
Straal	١
_	
for	١
+	5

Environmental Setting	SO ₄ (µg/m ³)				5 7.7	7 5.1																	
	Pb (µg/m³)	Max Qtr		0.006	0.006	0.007																	
ū	Pb (I	Max		0.007	0.008	0.007																	
	TSP (µg/m³)	AAM		:	65.7	62.7																	
) TSP (Max 24- hr		:	126	107				PM _{2.5} (µg/m ³)	Fed^ 24-hr		_	7	4								
	3/m ₃)	AAM		11.28	13.51	13.6				PN													
	PM _{2.5} (µg/m ³)	Max 24-hr		53.7	38.1	8.09	lard		edance	PM ₁₀ (µg/m³)	State 24-hr		:	19	14								
Quality	m³)	AM			34.5	33.7	I-hour stanc		ırds Exce	PM ₁₀	Fed 24-hr		:	0	0								
Table 3 2011-2013 Local Air Quality	PM ₁₀ (µg/m ³)	Max 24-hr		:	<i>L</i> 9	82	20 PPM state	Table 4	2011-2013 Air Quality Standards Exceedance		State 8-hr		:	20	65								
2041-2043	B)	AAM		15.8	15.5	16.6	ceeding the 2	:	13 Air Qua	O ₃ (PPM)	State 1-hr		:	27	52								
	NO ₂ (PPB)	Max 1-hr		57.6	61.7	63.3	ited as not ex		2011-20		Fed* 8-hr	unty 2	:	47	<i>L</i> 9	J13							
	(V	Max 8-hr			0.102	0.115	tations are no				Station	Riverside Coul	2013	2012	2011								
	O ₃ (PPM)	Max 1-hr		:	0.126	0.128	iowever, all s				Monitoring Station	Metropolitan Riverside Cou	-			Source: SCAOMD 2011-2 pollutant not monitored * 0.075 ppm ^35 µg/m3							
		Max 8- hr		1.6	1.6	1.4	SCAQMD; I		Į			_	<u> </u>			O) i * <							
	8	Max 1- hr			:	:	3 provided by c meter n																
lanning		Monitoring Station	Metropolitan Riverside County	2013	2012	2011	Source: SCAQMD 2011-2013 **Specific station data is not provided by SCAQMD; however, all stations are noted as not exceeding the 20 PPM state 1-hour standard **Tipollutant not monitored **PPM, parts per million **Tipollutant not monitored **PPM, parts per million **Tipollutant not monitored **Tipol	1 5) ~						n.t	Review	C ~	 m!	++ ~	○ C+	- Off	Don	

		O ₃ (PPM)		PM ₁₀ (PM ₁₀ (µg/m³)	PM _{2.5} (µg/m³)
Monitoring Station	Fed*	State	State	Fed	State	Fed^
	8-hr	1-hr	8-hr	24-hr	24-hr	24-hr
Metropolitan Riverside County 2	nty 2					
2013	:	-		:	:	_
2012	47	27	0/	0	16	7
2011	<i>L</i> 9	52	65	0	14	4
Source: SCAQMD 2011-2013 pollutant not monitored	13					

3.5 Sensitive Receptors

Some populations are more susceptible to the effects of air pollution than the population at large; these populations are defined as sensitive receptors. Sensitive receptors include children, the elderly, the sick, and the athletic. Land uses associated with sensitive receptors include residences, schools, playgrounds, childcare centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. Sensitive receptors are located north, east, and south of the project. The Ab Brown Sports Complex Park is located directly south of the project site. Residential uses are located north and west of the project site. Exhibit 2 (Radius Map) identifies existing development in the project vicinity based on recent assessor's parcel data.

3.6 Local Transportation

The proposed project is located south of Center Street and north of Placentia Lane. Both roadways are two-lane, undivided roadways.

3.7 Climate Change

3.7.1 Defining Climate Change

Climate change is the distinct change in measures of climate for a long period of time. Climate change can result from natural processes and from human activities. Natural changes in the climate can be caused by indirect processes such as changes in the Earth's orbit around the Sun or direct changes within the climate system itself (i.e. changes in ocean circulation). Human activities can affect the atmosphere through emissions of gases and changes to the planet's surface. Emissions affect the atmosphere directly by changing its chemical composition, while changes to the land surface indirectly affects the atmosphere by changing the way the Earth absorbs gases from the atmosphere. The term "climate change" is preferred over the term "global warming" because "climate change" conveys the fact that other changes can occur beyond just average increase in temperatures near the Earth's surface. Elements that indicate that climate change is occurring on Earth include:

- Rising of global surface temperatures by 1.3° Fahrenheit (F) over the last 100 years
- Changes in precipitation patterns
- Melting ice in the Arctic
- Melting glaciers throughout the world
- Rising ocean temperatures
- Acidification of oceans
- Range shifts in plant and animal species

Climate change is intimately tied to the Earth's greenhouse effect. The greenhouse effect is a natural occurrence that helps regulate the temperature of the planet. The majority of radiation from the Sun hits the Earth's surface and warms it. The surface in turn radiates heat back towards the atmosphere, known as infrared radiation. Gases and clouds in the atmosphere trap and prevent some of this heat from escaping back into space and re-radiate it in all directions. This process is essential to supporting life on Earth because it keeps the planet approximately 60° F warmer than without it. Emissions from human activities since the beginning of the industrial revolution (approximately 150 years) are adding to the natural greenhouse effect by increasing the gases in the atmosphere that trap heat, thereby contributing to an average increase in the Earth's temperature. Human activities that enhance the greenhouse effect are detailed below.

Greenhouse Gases

The greenhouse effect is caused by a variety of "greenhouse gases". Greenhouse gases (GHGs) occur naturally and from human activities. Greenhouse gases produced by human activities include carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O_1), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF_6). Since the year 1750, it is estimated

that the concentrations of carbon dioxide, methane, and nitrous oxide in the atmosphere have increased over 36 percent, 148 percent, and 18 percent, respectively, primarily due to human activity. The primary GHGs are discussed below.

Carbon Dioxide. CO_2 is emitted and removed from the atmosphere naturally. Animal and plant respiration involves the release of carbon dioxide from animals and its absorption by plants in a continuous cycle. The ocean-atmosphere exchange results in the absorption and release of CO_2 at the sea surface. Carbon dioxide is also released from plants during wildfires. Volcanic eruptions release a small amount of CO_2 from the Earth's crust.

Human activities that affect carbon dioxide in the atmosphere include burning of fossil fuels, industrial processes, and product uses. Combustion of fossil fuels is the largest source of carbon dioxide emissions in the United States, accounting for approximately 85 percent of all equivalent emissions. Because of the fossil fuels used, the largest of these sources is electricity generation and transportation. When fossil fuels are burned, the carbon stored in them is released into the atmosphere entirely as CO₂. Emissions from on site industrial activities also emit carbon dioxide such as cement, metal, and chemical production and use of petroleum produced in plastics, solvents, and lubricants.

Methane. Methane (CH₄) is emitted from human activities and natural sources. Natural sources of methane include wetlands, gas hydrates, permafrost, termites, oceans, freshwater bodies, soils, and wildfires. Human activities that cause methane releases include fossil fuel production, animal digestive processes from farms, manure management, and waste management. It is estimated that 50 percent of global methane emissions are human generated. Wetlands are the primary natural producers of methane in the world because the habitat is conducive to bacteria that produce methane during decomposition of organic material. Methane is produced from landfills as solid waste decomposes. Methane is a primary component of natural gas and is emitted during its production, processing, storage, transmission, distribution, and use. Decomposition of organic material in manure stocks or in liquid manure management systems also releases methane. Releases from animal digestive processes are the primary source of human-related methane.

Nitrous Oxide. Anthropogenic (human) sources of nitrous oxide include agricultural soil management, animal manure management, sewage treatment, combustion of fossil fuels, and production of certain acids. N_2O is produced naturally in soil and water, especially in wet, tropical forests. The primary human-related source of N_2O is agricultural soil management due to use of synthetic nitrogen fertilizers and other techniques to boost nitrogen in soils. Combustion of fossil fuels (mobile and stationary) is the second leading source of nitrous oxide, although parts of the world where catalytic converters are used (such as California) have significantly lower levels than those areas that do not.

High Global Warming Potential Gases. High global warming potential (GWP) gases (or fluorinated gases) are entirely manmade and are mainly used in industrial processes. HFCs, PFCs, and SF $_6$ are high GWP gases. These types of gases are used in aluminum production, semiconductor manufacturing, electric power transmission, magnesium production and processing, and in the production of hydrochlorofuorocarbon-22 (HCFC-22). High GWP gases are also used as substitutes for ozone-depleting gases like chlorofluorocarbons (CFCs) and halons. Use of high GWP gases as substitutes for ozone-depleting substances is the primary use of these gases in the United States.

Water Vapor. It should be noted that water vapor is also a significant GHG in the atmosphere; however, concentration of water vapor in the air is primarily dependent on air temperature and cannot be influenced by humans.

GHGs behave differently in the atmosphere and contribute to climate change in different ways. Some gases have more potential to reflect infrared heat back towards the earth while some persist in the atmosphere longer than others. To equalize the contribution of GHGs to climate change, the Intergovernmental Panel on Climate Change (IPCC) devised a weighted metric to compare all greenhouse gases to carbon dioxide. The weighting depends on the lifetime of the gas in the atmosphere and its radiative efficiency. As an example, over a time horizon of 100-years, emissions of nitrous oxide will contribute to climate change 298 times more than the same amount of emissions of carbon dioxide while emissions of HFC-23 would contribute 14,800 times more than the same amount of carbon dioxide. These differences define a gas's GWP. Table 5 (Global Warming Potential of Greenhouse Gases) identifies the lifetime and GWP of select GHGs. The lifetime of the GHG represents how many years the

GHG will persist in the atmosphere. The GWP of the GHG represents the GHG's relative potential to induce climate change as compared to carbon dioxide.

Carbon Sequestration

Carbon sequestration is the process by which plants absorb CO₂ from the atmosphere and store it in biomass like leaves and grasses. Agricultural lands, forests, and grasslands can all sequester carbon dioxide, or emit it. The key is to determine if the land use is emitting carbon dioxide faster than it is absorbing it. Young, fast-growing trees are particularly good at absorbing more than they release and are known as a *sink*. Agricultural resources often end up being sources of carbon release because of soil management practices. Deforestation contributes to carbon dioxide emissions by removing trees, or carbon sinks, that would otherwise absorb CO₂. Forests are a crucial part of sequestration in some parts of the world, but not much in the United States. Another form of sequestration is geologic sequestration. This is a manmade process that results in the collection and transport of CO₂ from industrial emitters (i.e. power plants) and injecting it into underground reservoirs.

Table 5
Global Warming Potential (GWP) of Greenhouse Gases (GHG)

GHG	Lifetime (yrs)	GWP
Carbon Dioxide	50-200	1
Methane	12	25
Nitrous Oxide	114	298
HFC-23	270	14,800
HFC-134a	14	1,430
HFC-152a	1.4	124
PFC-14	50,000	7,390
PFC-116	10,000	12,200
Sulfur Hexafluoride	3,200	22,800
Source: IPCC 2007	_	

3.7.2 Climate Change and California

Specific, anticipated impacts to California have been identified in the 2009 California Climate Adaptation Strategy prepared by the California Natural Resources Agency (CNRA) through extensive modeling efforts. ¹¹ General climate changes in California indicate that:

- California is likely to get hotter and drier as climate change occurs with a reduction in winter snow, particularly in the Sierra Nevadas
- Some reduction in precipitation is likely by the middle of the century
- Sea-levels will rise up to an estimated 55 inches
- Extreme events such as heat waves, wildfires, droughts, and floods will increase
- Ecological shifts of habitat and animals are already occurring and will continue to occur

It should be noted that changes are based on the results of several models prepared under different climatic scenarios; therefore, discrepancies occur between the projections. The potential impacts of global climate change in California are detailed below.

Public Health and Welfare

Concerns related to public health and climate change includes higher rates of mortality and morbidity, change in prevalence and spread of disease vectors, decreases in food quality and security, reduced water availability, and increased exposure to pesticides. These concerns are all generally related to increase in ambient outdoor air temperature, particularly in summer.

Higher rates of mortality and morbidity could arise from more frequent heat waves at greater intensities. Health impacts associated with extreme heat events include heat stroke, heat exhaustion, and exacerbation of medical conditions such as

cardiovascular and respiratory diseases, diabetes, nervous system disorders, emphysema, and epilepsy. Climate change would result in degradation of air quality promoting the formation of ground-level pollutants, particularly ozone. Degradation of air quality would increase the severity of health impacts from criteria and other air pollutants discussed in Section 4.3 (Air Quality). Temperature increases and increases in carbon dioxide are also expected to increase plant production of pollens, spores, and fungus. Pollens and spores could induce or aggravate allergic rhinitis, asthma, and obstructive pulmonary diseases.

Precipitation projections suggest that California will become drier over the next century due to reduced precipitation and increased evaporation from higher temperatures. These conditions could result in increased occurrences of drought. Surface water reductions will increase the need to pump groundwater, reducing supplies and increasing the potential for land subsidence.

Precipitation changes are also suspected to impact the Sierra snowpack (see "Water Management" herein). Earlier snowmelts could coincide with the rainy season and could result in failure of the flood control devices in that region. Flooding can cause property damage and loss of life for those affected. Increased wildfires are also of concern as the State "dries" over time. Wildfires can also cause property damage, loss of life, and injuries to citizens and emergency response services.

Sea-level rises would also threaten human health and welfare. Flood risks will be increased in coastal areas due to strengthened storm surges and greater tidal damage that could result in injury and loss of property and life. Gradual rising of the sea will permanently inundate many coastal areas in the state.

Other concerns related to public health are changes in the range, incidence, and spread of infectious, water-borne, and food-borne diseases. Changes in humidity levels, distribution of surface water, and precipitation changes are all likely to shift or increase the preferred range of disease vectors (i.e. mosquitoes). This could expose more people and animals to potential for vector-borne disease.

Biodiversity and Habitat

Changes in temperature will change the livable ranges of plants and animals throughout the state and cause considerable stress on these species. Species will shift their range if appropriate habitat is available and accessible if they cannot adapt to their new climate. If they do not adapt or shift, they face local extirpation or extinction. As the climate changes, community compositions and interactions will be interrupted and changed. These have substantial implications on the ecosystems in the state. Extreme events will lead to tremendous stress and displacement on affected species. This could make it easier for invasive species to enter new areas, due to their ability to more easily adapt. Precipitation changes would alter stream flow patterns and affect fish populations during their life cycle. Sea level rises could impact fragile wetland and other coastal habitat.

Water Management

Although disagreement among scientists on long-term precipitation patterns in the State has occurred, it is generally accepted by scientists that rising temperatures will impact California's water supply due to changes in the Sierra Nevada snowpack. Currently, the State's water infrastructure is designed to both gather and convey water from melting snow and to serve as a flood control device. Snowpack melts gradually through spring warming into early summer, releasing an average of approximately 15 million acre-feet of water. The State's concern related to climate change is that due to rising temperatures, snowpack melt will begin earlier in the spring and will coincide with the rainy season. The combination of precipitation and snowmelt would overwhelm the current system, requiring tradeoffs between water storage and flood protection to be made. Reduction in reserves from the Sierra Nevada snowpack is troublesome for California and particularly for Southern California. Approximately 75-percent of California's available water supply originates in the northern third of the state while 80 percent of demand occurs in the southern two-thirds. There is also concern is that rising temperatures will result in decreasing volumes from the Colorado River basin. Colorado River water is important to Southern California because it supplies water directly to Metropolitan Water District of Southern California. Water from the Colorado River is also used to recharge groundwater basins in the Coachella Valley.

Agriculture

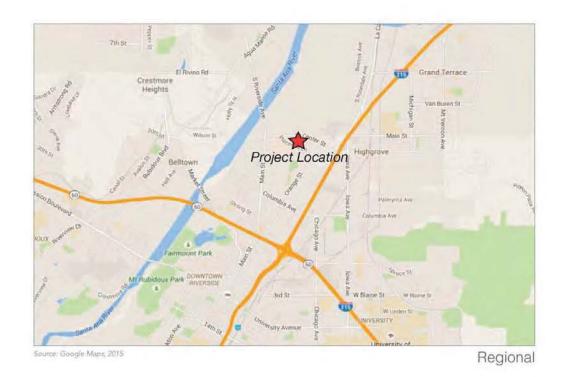
California is the most agriculturally productive state in the US resulting in more than 37 billion dollars in revenue in 2008. California is the nation's leading producer of nearly 80 crops and livestock commodities, supplying more than half of the nation's fruit and vegetables and over 90 percent of the nation's production of almonds, apricots, raisin grapes, olives, pistachios, and walnuts. Production of crops is not limited to the Central Valley but also occurs in Southern California. Strawberries and grapes are grown in San Bernardino and Riverside Counties. Orange County and San Diego County also contribute to strawberry production. Cherries are also grown in Los Angeles and Riverside County. Anticipated impacts to agricultural resources are mixed when compared to the potentially increased temperatures, reduced chill hours, and changes in precipitation associated with climate change. For example, wheat, cotton, maize, sunflower, and rice are anticipated to show declining yields as temperatures rise. Conversely, grapes and almonds would benefit from warming temperatures. Anticipated increases in the number and severity in heat waves would have a negative impact on livestock where heat stress would make livestock more vulnerable to disease, infection and mortality. The projected drying trend and changes in precipitation are a threat to agricultural production in California. Reduced water reliability and changes in weather patterns would impact irrigated farmlands and reduce food security. Furthermore, a drying trend would increase wildfire risk. Overall, agriculture in California is anticipated to suffer due to climate change impacts.

Forestry

Increases in wildfires will substantially impact California's forest resources that are prime targets for wildfires. This can increase public safety risks, property damage, emergency response costs, watershed quality, and habitat fragmentation. Climate change is also predicted to affect the behavior or plant species including seed production, seedling establishment, growth, and vigor due to rising temperatures. Precipitation changes will affect forests due to longer dry periods and moisture deficits and drought conditions that limit seedling and sapling growth. Prolonged drought also weakens trees, making them more susceptible to disease and pest invasion. Furthermore, as trees die due to disease and pest invasion (i.e. the Bark Beetle invasion of the San Bernardino Forest), wildfires can spread more rapidly.

Transportation and Energy Infrastructure

Higher temperatures will require increased cooling, raising energy production demand. Higher temperatures also decrease the efficiency of distributing electricity and could lead to more power outages during peak demand. Climate changes would impact the effectiveness of California's transportation infrastructure as extreme weather events damage, destroy, and impair roadways and railways throughout the state causing governmental costs to increase as well as impacts to human life as accidents increase. Other infrastructure costs and potential impacts to life would increase due to the need to upgrade levees and other flood control devices throughout the state. Infrastructure improvement costs related to climate change adaptation are estimated in the tens of billions of dollars.



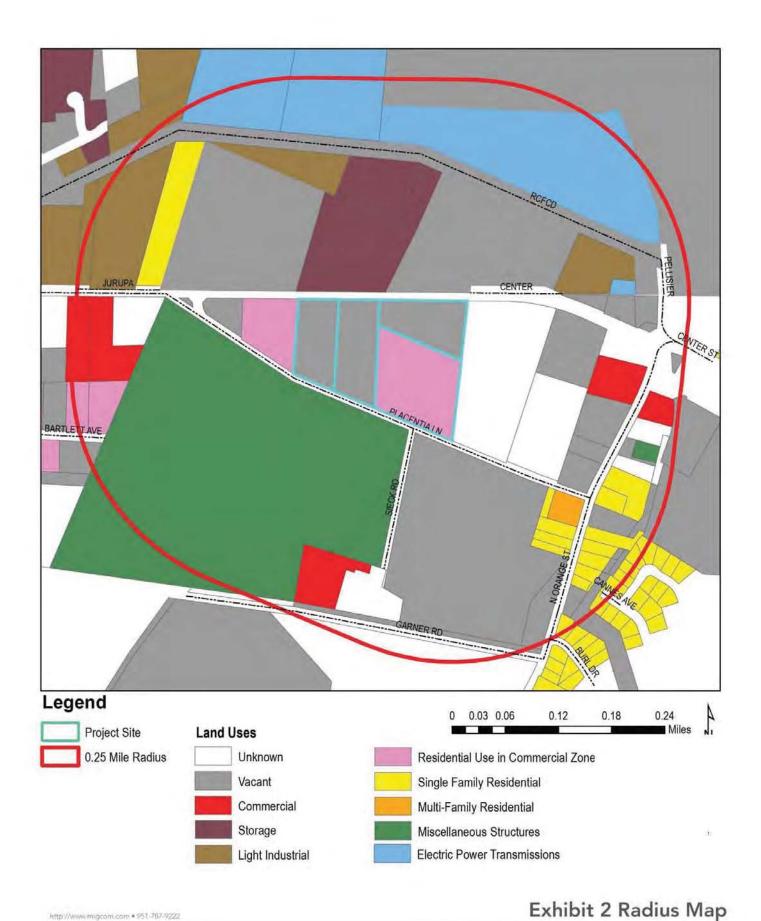


Exhibit 1 Regional and Vicinity Map

http://www.migcom.com • 951-787-9222

Development Review Committee - Exhibit 7 - CEQA Documents

Wanning Commission - Exhibit 1 - Development Review Committee Staffukliportoject Development Review Committee - Exhibit 7 - CEQA Documents

4 Regulatory Framework

The following summarizes Federal, State, and local regulations related to air quality, pollution control, greenhouse gas emissions.

4.1 Clean Air Act

The Federal Clean Air Act (CAA) defines the Environmental Protection Agency's (EPA) responsibilities for protecting and improving the United States air quality and ozone layer. Yet components of the CAA include reducing ambient concentrations of air pollutants that cause health and aesthetic problems, reducing emission of toxic air pollutants, and stopping production and use of chemicals that destroy the ozone.

Federal clean air laws require areas with unhealthy levels of ozone, inhalable particulate matter, Carbon monoxide, nitrogen dioxide, and sulfur dioxide to develop State Implementation Plans (SIPs); comprehensive documents that identify how an area will attain NAAQS. Deadlines for attainment were established in the 1990 amendments to the CAA based on the severity of an area's air pollution problem. Failure to meet air quality deadlines can result in sanctions against the State or the EPA taking over enforcement of the CAA in the affected area. SIPs are a compilation of new and previously submitted plans, programs, district rules, and State and Federal regulations. The SCAQMD implements the required provisions of an applicable SIP through its AQMP. Currently, SCAQMD implements the 8-hr Ozone and PM_{2.5} SIP in the 2007 AQMP and the PM₁₀ SIP in the 2003 AQMP. The PM_{2.5} SIP is currently being revised by SCAQMD in response to partial disapproval by the EPA. The 2012 Lead SIP for the Los Angeles County portion of SCAB was adopted by the SCAQMD Board on May 4, 2012 and approved by ARB on May 24, 2012 and forwarded to the EPA for approval as a revision to the California SIP.

4.2 California Clean Air Act

The California Clean Air Act (CCAA) of 1988 was enacted to develop plans and strategies for attaining California Ambient Air Quality Standards (CAAQS). The California Air Resources Board (ARB), which is part of the California Environmental Protection Agency (Cal-EPA), develops statewide air quality regulations, including industry-specific limits on criteria, toxic, and nuisance pollutants. The CCAA is more stringent than Federal law in a number of ways including revised standards for PM¹⁰ and ozone and State for visibility reducing particles, sulfates, hydrogen sulfide, and vinyl chloride.

4.3 2012 Air Quality Management Plan

The purpose of an Air Quality Management Plan (AQMP) is to bring an air basin into compliance with federal and state air quality standards and is a multi-tiered document that builds on previously adopted AQMPs.¹³ The 2003 AQMP was adopted in August 2003 and demonstrated O₃ and PM₁₀ for the Basin. It also provides the maintenance plans for CO and NO₂, which the Basin has been in attainment for since 1997 and 1992, respectively. The 2007 AQMP for the Basin was approved by the SCAQMD Board of Directors in June 2007. The 2007 AQMP builds on the 2003 AQMP and is designed to address the federal 8-hour ozone and PM_{2.5} air quality standards. The AQMP identifies short- and long-term control measures designed to reduce stationary, area, and mobile source emissions, organized into four primary components:

- 1. District Stationary and Mobile Source Control Measures
- 2. Air Resources Board (ARB) State Strategy
- 3. Supplement to ARB Control Strategy
- 4. SCAG Regional Transportation Strategy and Control Measures

The 2012 AQMP was adopted by the SCAQMD board on December 7, 2012. The 2012 AQMP incorporated the latest scientific and technological information and planning assumptions, including the 2012 Regional Transportation Plan/Sustainable Communities Strategy and updated emission inventory methodologies for various source categories. The 2012 AQMP includes the new and changing federal requirements, implementation of new technology measures, and the continued development of economically sound, flexible compliance approaches. The SCAQMD is currently initiating an early development process for preparation of the 2016 AQMP.

4.4 SCAQMD Rule Book

In order to control air pollution in the Basin, SCAQMD adopts rules that establish permissible air pollutant emissions and governs a variety of businesses, processes, operations, and products to implement the AQMP and the various federal and state air quality requirements. SCAQMD does not adopt rules for mobile sources; those are established by ARB or the United States Environmental Protection Agency (EPA). Rules that will be applicable during construction of the proposed project include Rule 403 (Fugitive Dust) and Rule 1113 (Architectural Coatings). Rule 403 prohibits emissions of fugitive dust from any grading activity, storage pile, or other disturbed surface area if it crosses the project property line or if emissions caused by vehicle movement cause substantial impairment of visibility (defined as exceeding 20 percent opacity in the air). Rule 403 requires the implementation of Best Available Control Measures (BACM) and includes additional provisions for projects disturbing more than five acres and those disturbing more than fifty acres. Rule 1113 establishes maximum concentrations of VOCs in paints and other applications and establishes the thresholds for low-VOC coatings.

4.5 Executive Order S-3-05

Executive Order S-3-05 was issued by California Governor Arnold Schwarzenegger and established targets for the reduction of greenhouse gas emission at the milestone years of 2010, 2020, and 2050. Statewide GHG emissions must be reduced to 1990 levels by year 2020 and by 80 percent beyond that by year 2050. The Order requires the Secretary of the California Environmental Protection Agency (CalEPA) to coordinate with other State departments to identify strategies and reduction programs to meet the identified targets. A Climate Action Team (CAT) was created and is headed by the Secretary of CalEPA who reports on the progress of the reduction strategies. The latest CAT *Biennial Report to the Governor and Legislature* was completed in April 2010. ACT also works in 11 subgroups to support development and implementation of the Scoping Plan (see "California Global Warming Solutions Act" herein).

4.6 Executive Order B-30-15

Executive Order B-30-15 was issued by California Governor Edmund G. Brown Jr. on April 29, 2015 to establish a California greenhouse gas reduction target of 40 percent below 1990 levels by 2030. This is meant as an interim target to ensure the state meets its ultimate goal of 80 percent below 1990 levels by 2050.

4.7 California Global Warming Solutions Act

The California State Legislature adopted the California Global Warming Solutions Act in 2006 (AB32). AB32 establishes the caps on statewide greenhouse gas emissions proclaimed in Executive Order S-3-05 and establishes a regulatory timeline to meet the reduction targets. The timeline is as follows:

January 1, 2009	Adopt Scoping Plan
January 1, 2010	Early action measures take effect
January 1, 2011	Adopt GHG reduction measures
January 1, 2012	Reduction measures take effect
December 31, 2020	Deadline for 2020 reduction target

As part of AB32, CARB had to determine what 1990 GHG emissions levels were and projected a business-as-usual (BAU) estimate for 2020 to determine the amount of GHG emissions that will need to be reduced. BAU is a term used to define emissions levels without considering reductions from future or existing programs or technologies. 1990 emissions are estimated at 427 million metric tons of carbon dioxide equivalent (MMTCO2E) while 2020 emissions (after accounting for the economic downturn in 2008 and implementation of Pavley 1 vehicle emissions reductions and the State Renewable Portfolio Standard identified in Air Resources Board Scoping Plan below) are estimated at 507 MMTCO2E; therefore, California GHG emissions

must be reduced 80 MMTCO2E (507 - 427 = 80) by 2020, a reduction of approximately 16 percent below BAU. Emissions are required to be reduced an additional 80 percent below 1990 levels by 2050.

4.8 Sustainable Communities and Climate Protection Act

In January 2009, California Senate Bill (SB) 375 went into effect known as the Sustainable Communities and Climate Protection Act. ¹⁵ The objective of SB375 is to better integrate regional planning of transportation, land use, and housing to reduce sprawl and ultimately reduce greenhouse gas emissions and other air pollutants. SB375 tasks ARB to set greenhouse gas reduction targets for each of California's 18 regional Metropolitan Planning Organizations (MPOs). Each MPO is required to prepare a Sustainable Communities Strategy (SCS) as part of their Regional Transportation Plan (RTP). The SCS is a growth strategy in combination with transportation policies that will show how the MPO will meet its GHG reduction target. If the SCS cannot meet the reduction goal, an Alternative Planning Strategy (APS) may be adopted that meets the goal through alternative development, infrastructure, and transportation measures or policies.

In the Southern California Association of Governments (SCAG) region (in which the proposed project is located), sub-regions can also elect to prepare their own SCS or APS. In August 2010, ARB released the proposed GHG reduction targets for the MPOs to be adopted in September 2010. The proposed reduction targets for the SCAG region were 8-percent by year 2020 and 13-percent by year 2035. The 8-percent year 2020 target was adopted in September 2010 and tentatively adopted the year 2035 until February 2011 to provide additional time for SCAG, ARB, and other stakeholders to account for additional resources (such as state transportation funds) needed to achieve the proposed targets. In February 2011, the SCAG President affirmed the year 2035 reduction target and SCAG Staff updated ARB on additional funding opportunities.

4.9 Air Resources Board Scoping Plan

The ARB Scoping Plan is the comprehensive plan to reach the GHG reduction targets stipulated in AB32. The key elements of the plan are to expand and strengthen energy efficiency programs, achieve a statewide renewable energy mix of 33 percent, develop a cap-and-trade program with other partners in the Western Climate Initiative (includes seven states in the United States and four territories in Canada), establish transportation-related targets, and establish fees. ¹⁶ The Scoping Plan measures are identified in Table 6 (Scoping Plan Measures). Note that the current early discrete actions are incorporated into these measures. ARB estimates that implementation of these measures will reduce GHG emissions in the state by 174 MMTCO2E by 2020; therefore, implementation of the Scoping Plan will meet the 2020 reduction target. In a report prepared on September 23, 2010, ARB indicates that 40 percent of the reduction measures identified in the Scoping Plan have been secured. ¹⁷ The cap-and-trade program began on January 1, 2012 after ARB completes a series of activities that deal with the registration process, compliance cycle, and tracking system; however, covered entities will not have an emissions obligation until 2013. ¹⁸ ARB is currently working on the low carbon fuel standard where public hearings and workshops are currently being conducted. In August 2011, the Scoping plan was reapproved by the ARB Board with the program's environmental documentation.

The ARB has prepared the First Update to the Scoping Plan (Update) with a draft made available for public review on February 10, 2014. The Update to the Scoping Plan builds upon the 2008 Scoping Plan with new strategies and recommendations. The Update identifies opportunities to leverage existing and new funds to further drive GHG emission reductions through strategic planning and targeted low carbon investments. The Update defines ARB's climate change priorities for the next five years and sets the groundwork to reach post-2020 goals set forth in Executive Orders S-3-05 and B-16-2012. The Update highlights California's progress toward meeting the 2020 GHG emission reduction goals defined in the 2008 Scoping Plan. It also evaluates how to align the State's long-term GHG reduction strategies with other State policy priorities for water, waste, natural resources, clean energy, transportation, and land use. A draft Environmental Analysis (EA) was released for a 45-day public review period on March 14, 2014. After considering public comments and Board direction, the final First Update, summary of comments received on the draft EA, and ARB's responses to those comments were released on May 15, 2014. The First Update to the Scoping Plan was approved by the Board on May 22, 2014.

4.10 Water Conservation in Landscaping Act

Section 65591 of the Government Code requires all local jurisdictions to adopt a water efficient landscape ordinance. The ordinance is to address water conservation through appropriate use and grouping of plants based on environmental conditions, water budgeting to maximize irrigation efficiency, storm water retention, and automatic irrigation systems. Failure to adopt a water efficiency ordinance requires a local jurisdiction to enforce the provisions of the State's model water efficiency ordinance. In 2009, the Department of Water Resources (DWR) updated the Model Water Efficient Landscape Ordinance pursuant to amendments to the 1991 Act. These amendments and the new model ordinance went into effect on January 1, 2010. The amended Act is applicable to any new commercial, multi-family, industrial or tract home project containing 2,500 square feet (SF) or more of landscaping. Individual landscape projects of 5,000 SF or more on single-family properties will also be subject to the Act. All landscape plans are required to include calculations verifying conformance with the maximum applied water allowance and must be prepared and stamped by a licensed landscape architect.

4.11 California Green Building Standards

New California Green Building Standards Code (CALGREEN) went into effect on January 1, 2011. ¹⁹ The purpose of the new addition to the California Building Code (CBC) is to improve public health, safety, and general welfare by enhancing the design and construction of buildings using concepts to reduce negative impacts or produce positive impacts on the environment. The CALGREEN regulations cover planning and design, energy efficiency, water efficiency and conservation, material conservation and resources efficiency, and environmental quality. Many of the new regulations have the effect of reducing greenhouse gas emissions from the operation of new buildings. Table 7 (CALGREEN Requirements) summarizes the previous requirements of the CBC and the new requirements of CALGREEN that went into effect in January 2011. Minor technical revisions and additional requirements went into effect in July 2012. The Code was further updated in 2013, effective January 1, 2014 through 2016.

Table 6 Scoping Plan Measures

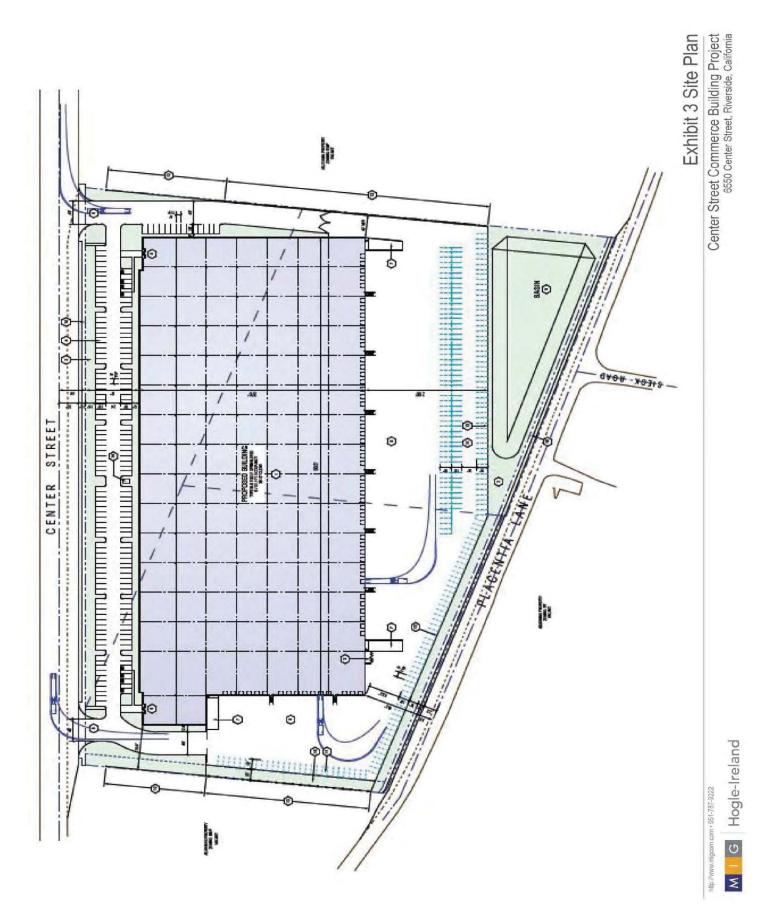

Measure	Scoping Plan Measures Description			
T-1	Pavely I and II – Light Duty Vehicle Greenhouse Gas Standards			
T-2	Low Carbon Fuel Standard			
T-3	Regional Transportation-Related Greenhouse Gas Targets			
T-4	Vehicle Efficiency Measures			
T-5	Ship Electrification at Ports			
T-6	Good Movement Efficiency Measures			
T-7	Heavy-Duty Vehicle Aerodynamic Efficiency			
T-8	Medium and Heavy-Duty Vehicle Hybridization			
T-9	High Speed Rail			
E-1	Energy Efficiency (Electricity Demand Reduction)			
E-2	Increase Combined Heat and Power Use			
	E-3 Renewable Portfolio Standard			
E-4	Million Solar Roofs			
CR-1	Energy Efficiency (Natural Gas Demand Reduction)			
CR-2	Solar Water Heating			
GB-1	Green Buildings			
W-1	Water Use Efficiency			
W-2	Water Recycling			
W-3	Water System Energy Efficiency			
W-4	Reuse Urban Runoff			
W-5	Increase Renewable Energy Production			
W-6	Public Good Charge (Water)			
I-1	Energy Efficiency for Large Industrial Sources			
	I-2 Oil and Gas Extraction GHG Reductions			
	I-3 Oil and Gas Transmission Leak Reductions			
I-4	Refinery Flare Recovery Process Improvements			
I-5	Removal of Methane Exemption from Existing Refinery Regulations			
RW-1	Landfill Methane Control			
RW-2	Increase Landfill Methane Capture Efficiency			
RW-3	Recycling and Zero Waste			
F-1	Sustainable Forest Target			
H-1	Motor Vehicle Air Conditioning			
H-2	Non-Utilities and Non-Semiconductor SF ₆ Limits			
H-3 H-4	Semiconductor Manufacturing PFC Reductions			
	Consumer Products High GWP Limits			
H-5 H-6	High GWP Mobile Source Reductions			
	High GWP Stationary Source Reductions High GWP Mitigation Fees			
H-7 A-1				
H-I	Large Dairy Methane Capture			

Table 7 CALGREEN Requirements

léo un		Requirements		
Item		Previous	CALGREEN	
4.1	Stormwater Management	Stormwater management required on projects > than one acre	All projects subject to stormwater management.	
	Surface Drainage	Surface water must flow away from building	Drainage patterns must be analyzed	
4.2	Energy Efficiency	California Energy Code	Minimum energy efficiency to be established by California Energy Commissions	
4.3	Indoor Water Use	HCD maximum flush rates; CEC water use standards for appliances and fixtures	Indoor water use must decrease by at least 20 percent (prescriptive or performance based)	
	Multiple Showerheads	Not covered	Multiple showerheads cannot exceed combined flow of the code	
	Irrigation Controllers	Not covered	Irrigation controllers must be weather or soil moisture based controllers	
4.4	Joint Protection	Plumbing and Mechanical Codes	All openings must be sealed with materials that rodents cannot penetrate	
	Construction Waste	Local Ordinances	Establishes minimum 50 percent recycling and waste management plan	
	Operation	Plumbing Code for gray water systems	Educational materials and manuals must be provided to building occupants and owners to ensure proper equipment operation	
4.5	Fireplaces	Local Ordinances	Gas fireplaces must be direct-vent sealed-combustion type; Wood stoves and pellet stoves must meet USEPA Phase II emissions limits	
	Mechanical Equipment	Not covered	All ventilation equipment must be sealed from contamination during construction	
	VOCs	Local Ordinances	Establishes statewide limits on VOC emissions from adhesives, paints, sealants, and other coatings	
	Capillary Break	No prescriptive method of compliance	Establishes minimum requirements for vapor barriers in slab on grade foundations	
	Moisture Content	Current mill moisture levels for wall and floor beams is 15-20 percent	Moisture content must be verified prior to enclosure of wall or floor beams	
	Whole House Fans	Not covered	Requires insulated louvers and closing mechanism when fan is off	
	Bath Exhaust Fans	Not covered	Requires Energy Star compliance and humidistat control	
	HVAC Design	Minimal requirements for heat loss, heat gain, and duct systems	Entire system must be designed in respects to the local climate	
7	Installer Qualifications	HVAC installers need not be trained	HVAC installers must be trained or certified	
/ [Inspectors	Training only required for structural materials	All inspectors must be trained	

5 Project Description

The project includes the construction of a 308,000-square-foot building on 15.63 acres located south of Center Street and north of Placentia Lane in the City of Riverside, California. The building includes 110,591 square feet of landscaping, the potential for up to 282 parking stalls, and 47 loading docks. There is no tenant for the proposed building, thus, the operational components of the project are speculative at this time. The City of Riverside recommended consideration of a "manufacturing" use as a worst-case, conservative approach to assessing operational impacts. The building has been treated as such herein, consistent with the project traffic impact analysis and health risk assessment. Project design features related to pollutant emissions includes use of low-VOC coatings on interiors and exterior surface of 37 grams per liter or less.

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

6 Air Quality Impact Analysis

The impact analysis contained herein was prepared utilizing guidance provided in the 1993 SCAQMD California Environmental Quality Act (CEQA) Air Quality Handbook. The thresholds identified in Appendix G of the State CEQA Guidelines, as implemented by the City of Riverside, have been utilized to determine the significance of potential impacts.

6.1 Thresholds of Significance

In accordance with Appendix G of the State CEQA Guidelines and the local implementation procedures of the City of Riverside, the project could result in potentially significant impacts related to air quality if it:

- A. Conflicts with or obstructs implementation of the applicable air quality plan.
- B. Violates any air quality standard or contributes substantially to an existing or projected air quality violation.
- C. Results in a cumulatively considerable net increase of any criteria pollutant that the region is non-attainment under an applicable Federal or State ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors).
- D. Exposes sensitive receptors to substantial pollutant concentrations.
- E. Create objectionable odors affecting a substantial number of people.

To determine if maximum daily criteria pollutant emissions from construction and operation of the proposed project are significant, the SCAQMD significance thresholds are used. These thresholds are identified in Table 8 (SCAQMD Maximum Daily Emissions Thresholds (lbs/day)).

Table 8
SCAQMD Maximum Daily Emissions Thresholds (lbs/days)

Pollutant	Construction	Operation					
NO _X	100	55					
VOC/ROG	75	55					
PM ₁₀	150	150					
PM _{2.5}	55	55					
SO _X	150	150					
CO	550	550					
Lead	3	3					
Source: SCAQM	D 2015						

6.2 AQMP Consistency

A significant impact could occur if the proposed project conflicts with or obstructs the implementation of South Coast Air Basin 2012 Air Quality Management Plan. Conflicts and obstructions that hinder implementation of the AQMP can delay efforts to meet attainment deadlines for criteria pollutants and maintaining existing compliance with applicable air quality standards. Pursuant to the methodology provided in Chapter 12 of the 1993 SCAQMD CEQA Air Quality Handbook, consistency with the South Coast Air Basin 2012 Air Quality Management Plan (AQMP) is affirmed when a project (1) does not increase the frequency or severity of an air quality standards violation or cause a new violation and (2) is consistent with the growth assumptions in the AQMP.²⁰ Consistency review is presented below:

1. The project would result in short-term construction and long-term pollutant emissions that are less than the CEQA significance emissions thresholds established by the SCAQMD, as demonstrated in Section 6.3 et seq of this report; therefore, the project could not result in an increase in the frequency or severity of any air quality standards violation and will not cause a new air quality standard violation.

2. The CEQA Air Quality Handbook indicates that consistency with AQMP growth assumptions must be analyzed for new or amended General Plan elements, Specific Plans, and significant projects. Significant projects include airports, electrical generating facilities, petroleum and gas refineries, designation of oil drilling districts, water ports, solid waste disposal sites, and off-shore drilling facilities; therefore, the proposed project is not defined as significant. This project does not include a General Plan Amendment and therefore does not require analysis consistency with the AQMP.

Based on the consistency analysis presented above, the proposed project will not conflict with the AQMP.

6.3 Pollutant Emissions

6.3.1 Construction

Short-term criteria pollutant emissions will occur during demolition, site grading, building construction, paving, and architectural coating activities. Emissions will occur from use of equipment, worker, vendor, and hauling trips, and disturbance of onsite soils (fugitive dust). To determine if construction of the proposed project could result in a significant air quality impact, the California Emissions Estimator Model (CalEEMod) has been utilized. CalEEMod defaults have generally been used for construction inputs in the model (see Appendix A for input values) and the results are summarized in Table 9 (Daily Construction Emissions). The methodology for calculating emissions is included in the CalEEMod *User Guide*, freely available at http://www.caleemod.com.

It was estimated that 7,416 square feet of existing, on-site structures will be demolished to accommodate the project. Construction of the building is anticipated to start in early 2017. CalEEMod defaults for construction schedule phase duration and equipment needs were utilized. Based on the results of the model, maximum daily emissions from the construction of the project will not result in excessive emissions of criteria pollutants when compared to SCAQMD daily thresholds. Volatile organic compounds (identified as reactive organic gases) associated with interior and exterior coating activities typically would exceed the threshold for a building of this size; however, the model includes use of a maximum 37 grams per liter (g/l) VOC content for interior and exterior coatings, as identified as a design feature in the project description. Use of low-VOC coatings during construction activities will result in daily, construction-related VOC emissions of 72 lbs/day, less than the threshold established by SCAQMD.

Table 9
Daily Construction Emissions (lbs/day)

Daily Concuracion Linicolone (1807ady)							
Source	ROG	NO _X	СО	SO ₂	PM ₁₀	PM _{2.5}	
Summer							
2017	6	70	48	<1	21	13	
2018	72	33	43	<1	6	3	
Winter							
2017	6	70	48	<1	21	13	
2018	72	33	44	<1	6	3	
Threshold	75	100	550	150	150	55	
Substantial?	No	No	No	No	No	No	

6.3.2 Operational and Area Sources

Long-term criteria air pollutant emissions will result from the operation of the proposed project. Long-term emissions are categorized as area source emissions, energy demand emissions, and operational emissions. Operational emissions will result from automobile and other vehicle sources associated with daily trips to and from the project. Area source emissions are the combination of many small emission sources that include use of outdoor landscape maintenance equipment, use of consumer products such as cleaning products, and periodic repainting of the proposed project. Off-site energy demand emissions result from use of electricity and natural gas and were also modeled using default information encoded into the emissions estimation software. Emissions from area sources were estimated using CalEEMod defaults.

The California Emissions Estimator Model (CalEEMod) was utilized to estimate mobile source emissions. Trip generation (3.82 daily trips per 1,000 SF) is based on the trip generation rates provided in the Institute of Transportation Engineers *Trip Generation Manual* (9th Edition).²¹ Passenger vehicles will consist of 74.4 percent of the fleet mix, light-duty trucks will consist of 8.4 percent of the fleet mix, medium-heavy duty trucks will consist of 4.6 percent of the truck trips, and heavy-heavy duty truck trips consist of 16.6 percent of the fleet mix. CalEEMod defaults were used for trip length, prime and no-primer trip percentages, and trip purpose in light of the proposed project being assessed as manufacturing us. It was assumed that the facility will use five forklifts and one generator set during operations. Assuming an opening year of 2019, the results of the CalEEMod model for summer and winter operation of the project are summarized in Table 10 (Daily Operational Emissions). Based on the results of the model, impacts associated with operation of the Project will not exceed the threshold established by SCAQMD.

Table 10
Daily Operational Emissions (lbs/day)

	Daily Ope	national Linis	Sions (ibs/uay	/				
Source	ROG	NO _X	CO	SO ₂	PM ₁₀	PM _{2.5}		
Summer								
Area Sources	16	<1	<1	0	<1	<1		
Energy Demand	<1	3	2	<1	<1	<1		
Mobile Sources	4	31	55	<1	12	3		
Equipment	1	11	10	<1	2	1		
Summer Total	22	45	67	<1	13	4		
Winter								
Area Sources	16	<1	<1	0	<1	<1		
Energy Demand	<1	3	2	<1	<1	<1		
Mobile Sources	4	33	58	<1	12	3		
Equipment	1	11	10	<1	2	1		
Winter Total	22	46	70	<1	13	4		
Maximum Daily	22	46	70	<1	13	4		
Threshold	55	55	550	150	150	55		
Substantial?	No	No	No	No	No	No		

6.4 Sensitive Receptors

6.4.1 Localized Significance Thresholds

As part of SCAQMD's environmental justice program, attention has recently been focusing more on the localized effects of air quality. Although the region may be in attainment for a particular criteria pollutant, localized emissions from construction activities coupled with ambient pollutant levels can cause localized increases in criteria pollutant that exceed national and/or State air quality standards.

Construction

Construction-related criteria pollutant emissions and potentially significant localized impacts were evaluated pursuant to the SCAQMD Final Localized Significance Thresholds Methodology. This methodology provides screening tables for one through five-acre project scenarios, depending on the amount of site disturbance during a day using the Fact Sheet for equipment usage in CalEEMod. Daily oxides of nitrogen (NO_X), carbon monoxide (CO), and particulate matter (PM_{10} and $PM_{2.5}$) emissions will occur during construction of the project, grading of the project site, and paving of facility parking lots and drive aisles. Table 11 (Localized Significance Threshold Analysis) summarize on- and off-site emissions as compared to the local thresholds established for Source Receptor Area (SRA) 23 (Metropolitan Riverside County). Based on the use of four tractors and three dozers during site preparation activities, a 3.5-acre threshold will be used (using linear regression). A 50-meter receptor distance was used to reflect the proximity of residential uses to the sports fields south of the project site. Note that particulate matter

emissions account for daily watering required by SCAQMD Rule 403 (three times per day for a 55 percent reduction in fugitive dust). Emissions from construction activities will not exceed any localized threshold.

Table 11
Localized Significance Threshold Analysis for Construction (lbs/day)

Phase	CO	NO _X	PM ¹⁰	PM ^{2.5}
Demolition	34	43	2	2
Site Preparation	40	52	10	6
Grading	47	70	7	4
Building Construction	18	26	2	2
Paving	14	17	1	1
Architectural Coating	2	2	<1	<1
Threshold	1,708	248	28	8
Potentially Substantial?	No	No	No	No

Operational

Operation-related LSTs become of concern when there are substantial on-site stationary and on-site mobile sources that could impact surrounding receptors. The proposed building does not have a tenant and is speculatively considered for manufacturing uses, thus the type and extent of on-site stationary or on-site mobile sources is unknown. In order to generally assess operational impacts related to LSTs, the ARB Characterization of the Off-Road Equipment Population for the state was used to estimate the amount of on-site equipment that may be used as part of future operations in the proposed building.²³ The "residual" category of businesses was queried that includes manufacturing uses as a result survey inquires throughout the state and extrapolated to the state and county levels. According to this report, manufacturing uses in Riverside County average 0.0313 pieces of equipment per employee. An estimate of 106 employees was calculated for the proposed project based on the NAIOP¹ logistics trends analysis for warehouses.²⁴ This results in an estimated 4 pieces of equipment that when compared to the countywide ratios of equipment populations and the type of non-specialized equipment associated with manufacturing uses, results in an estimate of three forklifts and one generator set. It's estimated that the facility will operate the generator at least once a month for an hour for maintenance purposes. According to Southern California Edison, the Ontario District (that includes parts of western Riverside), the area experiences an average of 100 minutes of "sustained" outage a year (from 2010 through 2015 for outages over five minutes in duration) with an annual frequency of 0.81 "sustained" outages per year. Using a composite of this information, the generator set was assumed to operated twelve times a year at 167 hours per operation. Use of these equipment coupled with on-site idling of trucks (subject to the state's 5-minute maximum idling restrictions) comprises the on-site emissions estimates for comparison to operation LSTs and summarized in Table 12 (Localized Significance Thresholds for Operations). The project will not result in local emissions in excessive of applicable screening thresholds.

Table 12
Localized Significance Thresholds for Operations)

Ecodine diginificance infrastrona for operations							
Source	CO	NO _X	PM ¹⁰	PM ^{2.5}			
Landscaping	0.04	0.00	0.00	0.00			
Natural Gas	2.31	2.75	0.21	0.21			
On-Site Idling	0.23	1.78	0.00	0.00			
On-Site Equipment	1.36	5.07	0.38	0.35			
Total	3.94	9.6	0.59	0.56			
Threshold	1,708	248	28	8			
Potentially Substantial?	No	No	No	No			

¹ Note that this is not an acronym.

6.4.2 Carbon Monoxide Hotspots

A carbon monoxide (CO) hotspot is an area of localized CO pollution that is caused by severe vehicle congestion on major roadways, typically near intersections. CO hotspots have the potential to violate State and Federal CO standards at intersections, even if the broader Basin is in attainment for Federal and State levels. The California Department of Transportation Project-Level Carbon Monoxide Protocol (Protocol) screening procedures have been utilized to determine if the proposed project could potentially result in a CO hotspot. Based on the recommendations of the Protocol, a screening analysis should be performed for the proposed project to determine if a detailed analysis will be required. The California Department of Transportation notes that because of the age of the assumptions used in the screening procedures and the obsolete nature of the modeling tools utilized to develop the screening procedures in the Protocol, they are no longer accepted. More recent screening procedures based on more current methodologies have been developed. The Sacramento Metropolitan Air Quality Management District (SMAQMD) developed a screening threshold in 2011, which states that any project involving an intersection experiencing 31,600 vehicles per hour or more will require detailed analysis. In addition, the Bay Area Air Quality Management District developed a screening threshold in 2010, which states that any project involving an intersection experiencing 44,000 vehicles per hour would require detailed analysis. The proposed project's operations would not involve an intersection experiencing this level of traffic; therefore, the proposed project passes the screening analysis and impacts are deemed less than significant. Based on the local analysis procedures, the proposed project would not result in a CO hotspot.

6.5 Odors

According to the CEQA Air Quality Handbook, land uses associated with odor complaints include agricultural operations, wastewater treatment plants, landfills, and certain industrial operations (such as manufacturing uses that produce chemicals, paper, etc.). The proposed project is sited within an existing industrial and commercial area. The proposed project does not produce odors that would affect a substantial number of people considering that the proposed project will not result in heavy manufacturing activities.

6.6 Cumulative Impacts

6.6.1 Cumulative Construction Impacts

Cumulative short-term, construction-related emissions from the project will not contribute considerably to any potential cumulative air quality impact because short-term project emissions will be less than significant and other concurrent construction projects in the region will be required to implement standard air quality regulations and mitigation pursuant to State CEQA requirements, just as this project has.

6.6.2 Cumulative Operational Impacts

The SCAQMD CEQA Air Quality Handbook identifies methodologies for analyzing long-term cumulative air quality impacts for criteria pollutants for which the Basin is nonattainment. These methodologies identify three performance standards that can be used to determine if long-term emissions will result in cumulative impacts. Essentially, these methodologies assess growth associated with a land use project and are evaluated for consistency with regional projections. These methodologies are outdated, and are no longer recommended by SCAQMD. SCAQMD allows a project to be analyzed using the projection method such that consistency with the AQMP will indicate that a project will not contribute considerably to cumulative air quality impacts. As discussed in AQMP Consistency, the proposed project is consistent with growth assumptions in the AQMP, and would not exceed any applicable SCAQMD thresholds for short- and long-term emissions. Therefore, the proposed project will not contribute to any potential cumulative air quality impacts.

7.1 Thresholds of Significance

The proposed project could result in potentially significant impacts related to greenhouse gas emissions and global climate change if it would:

- A. Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment.
- B. Conflict with an applicable plan, policy, or regulation adopted for the purposes of reducing the emissions of greenhouse gases.

A numerical threshold for determining the significance of greenhouse gas emissions in the South Coast Air Basin (Basin) has not been established by the South Coast Air Quality Management District (SCAQMD). As an interim threshold based on guidance provided in the CAPCOA *CEQA* and *Climate Change* handbook, a non-zero threshold approach based on Approach 2 of the handbook has been used. Threshold 2.5 (Unit-Based Thresholds Based on Market Capture) establishes a numerical threshold based on capture of approximately 90 percent of emissions from future development. The latest threshold developed by SCAQMD using this method is 10,000 metric tons carbon dioxide equivalent (MTCO2E) per year for industrial projects. This threshold is based on the review of 711 CEQA projects. This threshold will be utilized herein to determine if emissions of greenhouse gases from this project will be significant.

7.2 Direct and Indirect Emissions

The proposed project will include activities that emit greenhouse gas emissions over the short- and long-term. While one project could not be said to cause global climate change, individual projects contribute cumulatively to greenhouse gas emissions that result in climate change. A greenhouse gas emissions inventory was prepared for the project using under BAU conditions and is analyzed below.

7.2.1 Short-Term Emissions

The project will result in short-term greenhouse gas emissions from construction and installation activities associated with construction of the proposed project. Greenhouse gas emissions will be released by equipment used for grading, paving, and building construction activities. GHG emissions will also result from worker and vendor trips to and from the project site. Table 12 (Construction Greenhouse Gas Emissions) summarizes the estimated yearly emissions from construction activities. Carbon dioxide emissions from construction equipment and worker/vendor trips were estimated utilizing the California Emissions Estimator Model (CalEEMod) version 2013.2.2 (see Appendix A). Construction activities are short-term and cease to emit greenhouse gases upon completion, unlike operational emissions that are continuous year after year until operation of the use ceases. Because of this difference, SCAQMD recommends in its draft threshold to amortize construction emissions over a 30-year operational lifetime. This normalizes construction emissions so that they can be grouped with operational emissions in order to generate a precise project GHG inventory. Amortized construction emissions are included in Table 12.

Table 13
Construction Greenhouse Gas Emissions

Construction	GHG Emissions (MT/YR)					
Year	CO ₂	CH₄	N ₂ O	TOTAL*		
2017	910	<1	0	912		
2018	391	<1	0	392		
AMORTIZED TOTAL [^]	43	<1	0	43		

^{*} MTCO2E

Note: Slight variations may occur due to rounding and variations in modeling software ^ Amortized over 30-years

7.2.2 Long-Term Emissions

Warehousing and distribution activities will result in continuous greenhouse gas emissions from mobile and operational sources. Mobile sources including vehicle trips to and from the project site will result primarily in emissions of CO_2 with minor emissions of CH_4 and N_2O . The most significant GHG emission from natural gas usage will be methane. Electricity usage by the project and indirect usage of electricity for water and wastewater conveyance will result primarily in emissions of carbon dioxide. Disposal of solid waste will result in emissions of methane from the decomposition of waste at landfills coupled with CO_2 emission from the handling and transport of solid waste. These sources combine to define the long-term greenhouse gas emissions for the build-out of the proposed project.

To determine long-term emissions, CalEEMod was used. The methodology utilized for each emissions source is based on the CAPCOA *Quantifying Greenhouse Gas Mitigation Measures* handbook.²⁶ A summary of the project's net long-term greenhouse gas emissions is included in Table 13 (Operational Greenhouse Gas Emissions). Emissions are presented as metric tons of carbon dioxide equivalent (MTCO2E) meaning that all emissions have been weighted based on their Global Warming Potential (GWP) (a metric ton is equal to 1.102 US short tons).

Table 14
Operational Greenhouse Gas Emissions

operational electricates and minimum								
Course	GHG Emissions (MT/YR)							
Source		CO ₂	CH₄	N ₂ O	TOTAL*			
Area		<1	<1	0	<1			
Energy		2,741	<1	<1	2,748			
Mobile		2,087	<1	0	2,088			
Solid Waste		39	2	0	87			
Water/Wastewater		600	1	<1	632			
	TOTAL	5,467	6	<1	5,555			
* MTCO2F/YR								

Mobile sources are based on annual vehicle miles traveled (VMT) based on daily trip generation identified in the trip generation memorandum.²⁷ Trip lengths have been adjusted based on a study of metropolitan commercial and freight travel conducted by the National Cooperative Highway Research Program. According to observed data collected in the field for the Southern California Association of Governments (SCAG) region, trip lengths for similar uses are estimated at 5.92 miles for light-duty trucks, 13.06 for medium-duty trucks, and 22.40 for heavy-duty trucks. Total vehicle miles were calculated using the average daily trips for each vehicle class and divided by total daily truck trips to get to an average truck distance of 17.41 miles. Natural gas usage and electricity usage are based on default demand figures utilized in CalEEMod. Solid waste generation is also based on CalEEMod defaults.

Note: Slight variations may occur due to rounding

CalEEMod does not include outdoor landscape irrigation demand defaults for this type of project. Estimated irrigation needs for landscaping was calculated at 2,591,811 gallons per year. Landscape irrigation requirements were calculated using the California Department of Water Resources (DWR) *Water Budget* Workbook that calculates the Maximum Applied Water Allowance (MAWA) for landscaping based on the requirements of the state water conservation in landscaping act.²⁸ This reflects the maximum allowable amount of water that is permitted to be used annually after consideration of effective precipitation (25 percent of annual rainfall). MAWA is calculated using the following equation:

```
MAWA = (ET<sub>0</sub> - Eppt) * 0.62 * [(0.70 * LA) + (0.30 * SLA)]

Where:

MAWA = Maximum Applied Water Allowance (gallons per year)

ET<sub>0</sub> = Reference Evapotranspiration for Locale (inches per year)

Eppt = Effective Precipitation (inches per year)

LA = Landscape Area (square feet)

SLA = Special Landscape Area (square feet)
```

Indoor water demand and wastewater discharges are based on CalEEMod defaults.

7.2.3 Greenhouse Gas Emissions Inventory

Table 14 (Greenhouse Gas Emissions Inventory) summarizes the yearly estimated greenhouse gas emissions from construction and operational sources. The total yearly carbon dioxide equivalent emissions for the proposed project are estimated at 5,598 MTCO2E. This does not exceed the SCAQMD threshold of 10,000 MTCO2E per year.

Table 15
Greenhouse Gas Emissions Inventory

Source	GHG Emissions (MT/YR)					
Source	CO ₂	CH₄	N ₂ O	TOTAL*		
Construction	43	<1	0	43		
Operation	5,467	6	<1	5,555		
			Total	5,598		

^{*} MTCO2E/YR

Note: Slight variations may occur due to rounding ^ Construction impacts amortized over 30-years

7.3 Greenhouse Gas Emissions Reduction Planning

ARB's *Scoping Plan* identifies strategies to reduce California's greenhouse gas emissions in support of AB32. Many of the strategies identified in the Scoping Plan are not applicable at the project level, such as long-term technological improvements to reduce emissions from vehicles. Some measures are applicable and supported by the project, such as energy efficiency. Finally, while some measures are not directly applicable, the project would not conflict with their implementation. Reduction measures are grouped into 18 action categories, as follows:

- California Cap-and-Trade Program Linked to Western Climate Initiative Partner Jurisdictions. Implement a
 broad-based California cap-and-trade program to provide a firm limit on emissions. Link the California cap-and-trade
 program with other Western Climate Initiative Partner programs to create a regional market system to achieve greater
 environmental and economic benefits for California.²⁹ Ensure California's program meets all applicable AB 32
 requirements for market-based mechanisms.
- California Light-Duty Vehicle Greenhouse Gas Standards. Implement adopted Pavley standards and planned second phase of the program. Align zero-emission vehicle, alternative and renewable fuel and vehicle technology programs with long-term climate change goals.
- 3. **Energy Efficiency.** Maximize energy efficiency building and appliance standards, and pursue additional efficiency efforts including new technologies, and new policy and implementation mechanisms. Pursue comparable investment in energy efficiency from all retail providers of electricity in California (including both investor-owned and publicly owned utilities).
- 4. **Renewables Portfolio Standards.** Achieve 33 percent renewable energy mix statewide.
- 5. **Low Carbon Fuel Standard.** Develop and adopt the Low Carbon Fuel Standard.

- 6. **Regional Transportation-Related Greenhouse Gas Targets.** Develop regional greenhouse gas emissions reduction targets for passenger vehicles.
- 7. **Vehicle Efficiency Measures.** Implement light-duty vehicle efficiency measures.
- 8. **Goods Movement.** Implement adopted regulations for the use of shore power for ships at berth. Improve efficiency in goods movement activities.
- 9. **Million Solar Roofs Program.** Install 3,000 megawatts of solar-electric capacity under California's existing solar programs.
- 10. **Medium- and Heavy-Duty Vehicles.** Adopt medium- (MD) and heavy-duty (HD) vehicle efficiencies. Aerodynamic efficiency measures for HD trucks pulling trailers 53-feet or longer that include improvements in trailer aerodynamics and use of rolling resistance tires were adopted in 2008 and went into effect in 2010.³⁰ Future, yet to be determined improvements, includes hybridization of MD and HD trucks.
- 11. **Industrial Emissions.** Require assessment of large industrial sources to determine whether individual sources within a facility can cost-effectively reduce greenhouse gas emissions and provide other pollution reduction co-benefits. Reduce greenhouse gas emissions from fugitive emissions from oil and gas extraction and gas transmission. Adopt and implement regulations to control fugitive methane emissions and reduce flaring at refineries.
- 12. **High Speed Rail.** Support implementation of a high speed rail system.
- 13. **Green Building Strategy.** Expand the use of green building practices to reduce the carbon footprint of California's new and existing inventory of buildings.
- 14. **High Global Warming Potential Gases.** Adopt measures to reduce high warming global potential gases.
- 15. **Recycling and Waste.** Reduce methane emissions at landfills. Increase waste diversion, composting and other beneficial uses of organic materials, and mandate commercial recycling. Move toward zero-waste.
- 16. **Sustainable Forests.** Preserve forest sequestration and encourage the use of forest biomass for sustainable energy generation. The 2020 target for carbon sequestration is 5 million MTCO2E/YR.
- 17. **Water.** Continue efficiency programs and use cleaner energy sources to move and treat water.
- 18. **Agriculture.** In the near-term, encourage investment in manure digesters and at the five-year Scoping Plan update determine if the program should be made mandatory by 2020.

Table 15 (Scoping Plan Consistency Summary) summarizes the project's consistency with the State Scoping Plan. As summarized, the project will not conflict with any of the provisions of the Scoping Plan and in fact supports seven of the action categories through water conservation and recycling.

Table 16
Scoping Plan Consistency Summary

Scop	ing Plan Consister	ncy Summary
Action	Supporting Measures	Consistency
Cap-and-Trade Program		Not Applicable. These programs involve capping emissions from electricity generation, industrial facilities, and broad scoped fuels. Caps do not directly affect this type of project.
Light-Duty Vehicle Standards	T-1	Not Applicable. This is a statewide measure establishing vehicle emissions standards.
Energy Efficiency	E-1 E-2 CR-1 CR-2	Consistent. The project will not conflict with any State mandated energy efficiency requirements.
Renewables Portfolio Standard	E-3	Not Applicable. Establishes the minimum statewide renewable energy mix.
Low Carbon Fuel Standard	T-2	Not Applicable. Establishes reduced carbon intensity of transportation fuels.
Regional Transportation-Related Greenhouse Gas Targets	T-3	Consistent. The project includes features that reduce greenhouse gas emissions, assisting the region in meeting emissions targets.
Vehicle Efficiency Measures	T-4	Not Applicable. Identifies measures such as minimum tire-fuel efficiency, lower friction oil, and reduction in air conditioning use.
Goods Movement	T-5	Not applicable. Identifies measures to improve goods movement efficiencies such as advanced combustion strategies, friction reduction, waste heat recovery, and electrification of accessories. While these measures are
Goods Movement	T-6	yet to be implemented and will be voluntary, the proposed project would not interfere with their implementation.
Million Solar Roofs Program	E-4	Not Applicable. Sets goal for use of solar systems throughout the state. While the project currently does not include solar energy generation, the buildings could support solar panels in the future.
Medium- & Heavy-Duty Vehicles	T-7	Consistent. MD and HD trucks and trailers working from the proposed project will be subject to aerodynamic and hybridization requirements as established by ARB; no
modum a neary buty venicies	T-8	feature of the project would interfere with implementation of these requirements and programs.
Industrial Emissions	I-1 I-2 I-3	Not Applicable. These measures are applicable to large industrial facilities (> 500,000 MTCOE2/YR) and other intensive uses such as refineries.

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee Staff Report Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Action	Supporting Measures	Consistency
	I-4	
	I-5	
High Speed Rail	T-9	Not Applicable. Supports increased mobility choice.
Green Building Strategy	GB-1	Consistent. The project includes water and solid waste efficiencies consistent with 2011 CALGREEN requirements.
	H-1	
	H-2	Not Applicable. The prepared prejection at a
High Global Warming Potential Gases	H-3	Not Applicable. The proposed project is not a
	H-4	substantial source of high GWP emissions and will
	H-5	comply with any future changes in air conditioning, fire
	H-6	protection suppressant, and other requirements.
	H-7	
	RW-1	Consistent. The project is subject to a minimum 50
Docueling and Wasto	RW-2	percent recycling standard and will recycle a minimum of
Recycling and Waste	RW-3	50 percent of construction debris per State and City requirements.
Sustainable Forests	F-1	Consistent. The project will increase carbon sequestration by maintaining on-site trees in project landscaping.
	W-1	
	W-2	
\\/	W-3	Consistent. The project includes use of recycled water
Water	W-4	and low-flow fixtures.
	W-5	
	W-6	
Agriculture	A-1	Not Applicable. The project is not an agricultural use.

ate Change Impact	·			

	8	Mitigation Measures
None required.		

- Western Regional Climate Center. Period of Record Monthly Climate Summary: Riverside Citrus Exp St, California (047473). http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca7473 [October 2014]
- ² United States Geological Survey. Riverside Quadrangle 15 Minute Series. 1942
- Western Regional Climate Center. Prevailing Wind Directions 1992-2002. http://www.wrcc.dri.edu/htmlfiles/westwinddir.html [October 2014]
- South Coast Air Quality Management District. CEQA Air Quality Handbook. 1993
- United States Environmental Protection Agency. Sulfur Dioxide. http://www.epa.gov/airquality/sulfurdioxide/ [August 2014]
- 6 South Coast Air Quality Management District. Air Quality. 2009
- South Coast Air Quality Management District. Air Quality. 2010
- 8 South Coast Air Quality Management District. Air Quality. 2011
- United States Environmental Protection Agency. Greenhouse Gas Emissions. www.epa.gov/climatechange/emissions/index.html [September 2014]
- Intergovernmental Panel on Climate Change. Changes in Atmospheric Constituents and in Radiative Forcing (Working Group I). Fourth Assessment Report. 2007
- ¹¹ California Natural Resources Agency. 2009 California Climate Adaptation Strategy.
- ¹² United States Environmental Protection Agency. Clean Air Act. www.epa.gov/air/caa/ [August 2014]
- South Coast Air Quality Management District. Air Quality Management Plan. 2012
- California Climate Action Team. Biennial Report. April 2010
- Southern California Association of Governments. Senate Bill 375 Fact Sheet. http://scaq.ca.gov/Documents/SCAG_SB375_Factsheet.pdf [September 2014]
- ¹⁶ California Air Resources Board. Climate Change Scoping Plan. December 2008
- ¹⁷ California Air Resources Board. AB 32 Climate Change, Scoping Plan Progress Report. September 2010
- California Air Resources Board. Cap-and-Trade. http://www.arb.ca.gov/cc/capandtrade/capandtrade.htm [September 14, 2011]
- California Building Standards Commission. California Code of Regulations Title 24. California Green Building Standards Code. 2010
- ²⁰ South Coast Air Quality Management District. CEQA Air Quality Handbook. 1993
- ²¹ Institute of Transportation Engineers. Trip Generation Manual. 9th ed. September 2012
- ²² South Coast Air Quality Management District. Fact Sheet for Applying CalEEMod to Localized Significance Thresholds.
- ²³ ERG & California Air Resources Board. Characterization of the Off-Road Equipment population. December 2008
- NAIOP. Logistics Trends and Specific Industries that Will Drive Warehouses and Distribution Growth and Demand for Space. March 20120
- South Coast Air Quality Management District. CEQA Significance Thresholds Working Group. Meeting # 15, Main Presentation. September 28, 2010
- 26 California Air Pollution Control Officers Association. Quantifying Greenhouse Gas Emissions. August 2010
- ²⁷ Kunzman Associates, Inc. Trip Generation Memorandum. October 3, 2014
- California Department of Water Resources. Water Budget Workbook. www.water.ca.gov/wateruseefficiency/docs/WaterBudget.xls [October 2014]
- ²⁹ California Air Resources Board. California GHG Emissions Forecast (2002-2020). October 2010
- 30 California Air Resources Board. Scoping Plan Measures Implementation Timeline. October 2010

Appendix A CalEEMod Results

Planning Commission - Exhibit 1 - Development Review Committee Development Review Committee - Exhibit 7 - CEQA Documents	Staff Report

Date: 3/25/2016 4:01 AM Floor Surface Area 308,000.00 101,590.00 271,378.80 Precipitation Freq (Days) Operational Year N2O Intensity (Ib/MWhr) Lot Acreage 2.33 6.23 **Center Street Warehouse** South Coast Air Basin, Annual 1000sqft 1000sqft Metric 0.029 Acre 2.2 Page 1 of 35 Wind Speed (m/s) CH4 Intensity (Ib/MWhr) CH4 In CORD Intensity 1325.65 CH4 In CH4 In CORD Intensity 1325.65 (Ib/MW)

Square Entered Comments & Non-Default Data

O UNA USer Entered Comments & Non-Default Data

Square Characteristics - Comments & Non-Default Data

Square Characteristics - Comments & Non-Default Data

Square Comments & Non-Default Data 308.00 101.59 6.23 Applitectural Coating - Use of Low-VOC Paints And Usage

Land Usage

Land Usage Riverside Public Utilities Other Non-Asphalt Surfaces Manufacturing Parking Lot Land Uses

Population

0

2019

900.0

Achicle Emission Factors - Fleet Mix Per SCAQMD Recommendation

Achicle Emission Factors - Fleet Mix Per Traffic Study

31

Exhibit

Page 2 of 35 Page 3 of 35 Page 3 of 35 Page 3 of 35 Page 4 by Morksheet - Include Landscape Water Demand using State Water Budget Worksheet Page 4 by Morksheet - Include Landscape Water Demand using State Water Budget Worksheet Page 4 by Morksheet - Include Landscape Water Demand using State Water Budget Worksheet Page 4 by Morksheet - Include Landscape Water Demand using State Water Budget Worksheet Page 4 by Morksheet - Include Landscape Water Demand using State Water Budget Worksheet Page 4 by Morksheet - Include Landscape Water Demand using State Water Budget Worksheet Page 4 by Morksheet Based on SCE Outage Date Report State Water Budget Worksheet Page 4 by Morksheet Based on SCE Outage Date Report State Water Budget Worksheet Page 4 by Morksheet Based on SCE Outage Date Report State Water Budget Worksheet Page 4 by Morksheet Based On SCE Outage Date Report State Water Budget Worksheet Page 4 by Morksheet Based On SCE Outage Date Report State Water Based On SCE Outage Date Report State Budget Worksheet Page 4 by Morksheet Based On SCE Outage Date Report State Budget Worksheet Page 4 by Morksheet Based On SCE Outage Date Report State Water Based On SCE Outage Date Report State Budget Worksheet Based On SCE Outage Date Report State Water Based On SCE Outage Date Report State Budget Worksheet Based On SCE Outage Date Report State Water Based On SCE Outage Date Report State Budget Worksheet Based On SCE Outage Date Report State Budget Worksheet Based On SCE Outage Date Report State Budget Worksheet Based On SCE Outage Based On SCE Outage Date Report State Budget Worksheet Based On SCE Outage Based On SCE Outage Based On SCE Outage Based	Date: 3/25//	005 Survey	New Value	37.00	37.00	12.00	CNG	1.67	3.00	1.00	2019	190.96	0.13	0.13	0.74	0.74	0.74	0.00	0.00	0.00	0.00	0.00	0.00
Figure May Version: CalEEMod 2013.2.2 Jale Fand Wastewater - Include Landscape Water Demand using State And Wastewater - Include Landscape Water Demand using State And Wastewater - Include Landscape Water Demand using State And Wastewater - Include Landscape Water Demand using State And Wastewater - 1 Include Landscape Water Struction Off-road Equipment - Assume Forklifts and Generator Scherational Off-Road Equipment - OperDays Per/Fear - Indicember - Indiversional Off-Road Equipment - OperDays Per/Fear - Indi	Page 2 of 35	ite Water Budget Worksheet st Equipment per ERG/ARB 20	Default Value	250.00	250.00	260.00	Diesel	8.00	0:00	0.00	2014	381.92	0.03	0.03	0.51	0.51	0.51	0.06	0.06	0.06	0.18	0.18	0.18
galEEMod Version: CalEEMod.2 fer And Wastewater - Include Lager and Wastewater - Include Lager and Wastewater - Include Lager and Master - 50% Mandatory Reconstruction Off-road Equipment - Table Name tblArchitecturalCoating tblArchitecter tblArchitecter tblArchitecter tblVehicleEF tblVehicleEF tblVehicleEF tblVehicleEF tblVehicleEF tblVehicleEF tblArchitecter	2013.2.2	andscape Water Demand using Sta ycling Requirement fitigation - Water 3 times daily Assume Forklifts and Generator Se SCE Outage Data		EF_Nonresidential_Exterior	EF_Nonresidential_Interior	OperDaysPerYear	OperFuelType	OperHoursPerDay	OperOffRoadEquipmentNumber	OperOffRoadEquipmentNumber	OperationalYear	SolidWasteGenerationRate	QH.	QHE	LDA	LDA	LDA	LDT1	LDT1	LDT1	LDT2	LDT2	LDT2
Hall for Could by 2011 - Exulpit 1 - Dévelobuleur réview Coulturine 2 rau reboi	BalEEMod Version: CalEEMod.2	Selid Wastewater - Include Las Mater And Wastewater - Include Las Selid Waste - 50% Mandatory Recy Censtruction Off-road Equipment Materiational Off-Road Equipment - Centerators Operatiosn Based on Selections	O Table Name	· tblArchitecturalCoating	X tblArchitecturalCoating	UtblOperationalOffRoadEquipment		CtblOperationalOffRoadEquipment	(1) C tblOperationalOffRoadEquipment	UtblOperationalOffRoadEquipment	tblProjectCharacteristics	(D) tblSolidWaste	tbl/ehicleEF	(ت) ح ج- شاکاک	(t) S tblVehicleEF	tbl/ehicleEF	tbl/ehicleEF	tbl/ehicleEF	tbl/ehicleEF	tbl/ehicleEF	U tbl/vehicleEF	R tbl∨ehicleEF	D tbl/vehicleEF

Date: 3/25/2	0.08	0.08	0.09	00:00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.05	0.05	0.05	00:00	0.00	0.00	00:00	0.00	00:00	0.00	0.00	97.79
Page 3 of 35	0.04	0.04	0.04	6.6660e-003	6.6660e-003	6.6660e-003	4.3770e-003	4.3770e-003	4.3770e-003	0.14	0.14	0.14	2.1280e-003	2.1280e-003	0.02	0.02	0.02	1.9400e-003	1.9400e-003	1.9400e-003	5.8200e-004	5.8200e-004	2.4960e-003	2.4960e-003	2.4960e-003	87.46
3.2.2			LHD1	LHD2	LHD2	LHD2	MCY	MCY	MCY	MDV	MDV	MDV	HW	HM	MHD	MHD	MHD	OBUS	OBUS	OBUS	SBUS	SBUS	UBUS	UBUS	UBUS	AerobicPercent
EalEEMod Version: CalEEMod.20	tbIVehicleEF	tblVehicleEF	tblVehicleEF ·	tblVehicleEF	tblWater																					

EMod Version: CalEEMod.2013.2.2	2013.2.2	Page 4 of 35	Date: 3/25//	Date: 3/25/2016 4:01 AM
tblWater	AerobicPercent	tblWater AerobicPercent 87.46 97.79	97.79	
tblWater	AerobicPercent	tblWater AerobicPercent 87.46 97.79	97.79	
tblWater	OutdoorWaterUseRate	tblWater OutdoorWaterUseRate 0.00 2,591,811.00	2,591,811.00	
tblWater	SepticTankPercent	tblWater SepticTankPercent 10.33 0.00	0.00	
tblWater	SepticTankPercent	tblWater SepticTankPercent 10.33 0.00	0.00	
tblWater	SepticTankPercent	Septic Tank Percent 10.33	0.00	
piecione Summary				

Panning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

AM	CO2e		912.3146	391.9891	1,304.3037		CO2e		912.3142	391.9889	1,304.3030	CO2e
Date: 3/25/2016 4:01 AM	N20		0.0000	0.0000	0.0000		NZO		0.0000	0.000.0	0.0000	N20
e: 3/25/2	CH4	'yr	0.1175	0.0435	0.1609		CH4	يخ.	0.1175	0.0435	0.1609	CH4
Dat	Total CO2	MT/yr	909.8475	391.0767	1,300.9241		Total CO2	MT/yr	909.8470	391.0765	1,300.9235	Total CO2
	NBio- CO2		909.8475	391.0767	1,300.9241		NBio- CO2 Total CO2		909.8470	391.0765	1,300.9235 1,300.9235	NBio-CO2
	Bio- CO2		0.0000	0.0000	0.0000		Bio- CO2		0.0000	0.0000	0.0000	Bio- CO2
	PM2.5 Total		0.4722	0.1413	0.6135		PM2.5 Total		0.4090	0.1413	0.5503	PM2.5 Total
of 35	Exhaust PM2.5		0.2623	0.0877	0.3500		Exhaust PM2.5		0.2623	0.0877	0.3500	Exhaust PM2.5
Page 5 of 35	Fugitive PM2.5		0.2099	0.0536	0.2635		Fugitive PM2.5		0.1467	0.0536	0.2003	Fugitive PM2.5
	PM10 Total		0.8965	0.2928	1.1893		PM10 Total		0.7620	0.2928	1.0548	PM10 Total
	Exhaust PM10	tons/yr	0.2811	0.0936	0.3747		Exhaust PM10	tons/yr	0.2811	0.0936	0.3747	Exhaust PM10
	Fugitive PM10	ton:	0.6154	0.1993	0.8146		Fugitive PM10	tons	0.4809	0.1993	0.6802	Fugitive PM10
2.2	S02		0.0108	4.8300e- 003	0.0157		S02		0.0108	4.8300e- 003	0.0157	S02
od.2013.	00		5.9757	2.3844	8.3601		00		5.9757	2.3844	8.3601	00
CalEEMc ction xtion	×ON		5.5485	1.8518	7.4003	되	NOx		5.5485	1.8518	7.4003	×ON
Version: Constru	ROG		0.6684	0.9682	1.6366	nstructio	ROG		0.6684	0.9682	1.6366	ROG
alEEMod Version: CalEEMod.2013.2.2 ale	nissioi	- Ex	nibi		Dev	elopr igated Construction	viev	V Co	MU.2017	itte	e Staf	f Repor
Attachment 3 - Cit			omm Com		e - E)	(NIDIL 7 - CEC	2A D	ocur	ner			

MA I	0.00	
Date: 3/25/2016 4:01 AM	0.00	
ite: 3/25/	0.00	
Da	0.00	
	0.00	
	0.00	
	10.30	
of 35	0.00	
Page 6 of 35	23.98	
	11.31	
	0.00	
	16.51	
2.2	0.00	
lod.2013	0.00	
CaIEEM	0.00	
Version:	0.00	
Pale Ban Deve	D Percent C C C C C C C C C C C C C C C C C C C	Commission - Exhibit 1 - Development Review Committee Staff Report ment Review Committee - Exhibit 7 - CEQA Documents

	C02e		0.0109	2,748.3561	0.0000	54.6021	86.8707	632.0694	3,521.9092			
	N20		0.0000	0.0200	0.0000	0.0000	0.0000	0.0574	0.0774			
	CH4	١,	3.0000e- 005	0.0585	0.0000	0.0170	2.2908	0.6713	3.0377			
	Total CO2	MT/yr	0.0103	2,740.9403	0.0000	54.2454	38.7632	600.1766	3,434.1358			
	NBio- CO2	•	0.0103	2,740.9403 2,740.9403	0.0000	54.2454	0.0000	574.9771	3,370.1731			
	Bio- CO2		0.0000	0.0000	0.0000	0.0000	38.7632	25.1995	63.9627			
	PM2.5 Total		2.0000e- 005	0.0382	0.3282	0.0400	0.0000	0.0000	0.4064			
	Exhaust PM2.5		2.0000e- 005	0.0382	0.000.0	0.0400	0.000.0	0.000.0	0.0782			
	Fugitive PM2.5	,			0.3282				0.3282			
	PM10 Total		2.0000e- 005	0.0382	1.3370	0.0434	0.0000	0.0000	1.4186			
	Exhaust PM10	'yr	2.0000e- 005	0.0382	0.0000	0.0434	0.000.0	0.000.0	0.0817			
	Fugitive PM10	tons/yr	•		1.3370				1.3370			
	SO2		0.0000	3.0200e- 003		6.0000e- 004			3.6200e- 003			
	00		5.3600e- 003	0.4222		0.4704	-		0.8980			
nal	×ON		5.0000e- 005	0.5026		0.5618			1.0644			
Operatio	ROG		2.9452	0.0553		0.0629			3.0635			
Ummitigated Operational Which is a second operational	ccion	- Category	_	- 1 Energy	Mobile	Offroad	Waste }	Water	Total	w Commi	ttoo \$to	,ff
g g omm oment Re	ssior eviev	V Co	nibi mm	t 1 - nitte		velc xnii	pm oit 7		Revie	w Commi [.] Document	ttee Sta s	ıff

	CO2e		0.0109	2,748.3561	0.0000	54.6021	86.8707	632.0292	3,521.8690			
	NZO		0.0000	0.0200 2,7	0.0000	0.0000 5	0.0000	0.0573 63	0.0773 3,5			
	CH4		ф	0.0585 0	0.0000	0.0170 0	2.2908 0	0.6709	3.0372 0			
	Total CO2	MT/yr	0.0103 3.0	.j	0.0000	54.2454 0	38.7632 2	600.1766 0	3,434.1358 3			
	NBio- CO2 To		0.0103 0	2,740.9403 2,740.9403	0.0000	54.2454 54	0.0000	574.9771 60	3,370.1731 3,4			
	Bio- CO2 NB		0.0000	0.0000 2,7	0.0000	0.0000 5	38.7632 0	25.1995 57	63.9627 3,3			
	PM2.5 Bi			0.0382	0.3282 (0.0400	0.0000	0.0000 2	0.4064 6			
	Exhaust PM2.5			0.0382	0.000.0	0.0400	0.000.0	0.000.0	0.0782			
	Fugitive E			0	0.3282 0	0	0	0	0.3282 0			
	PM10 F		2.0000e- 005	0.0382	1.3370 (0.0434	0.0000	0.0000	1.4186			
	Exhaust PM10			0.0382	0.0000	0.0434	0.0000	0.0000	0.0817			
	Fugitive PM10	tons/yr			1.3370				1.3370			
			0.0000	3.0200e- 003		6.0000e- 004			3.6200e- 003			
	8		5.3600e- 003	0.4222		0.4704			0.8980			
	×ON			0.5026		0.5618			1.0644			
rational	ROG		2.9452	0.0553		0.0629			3.0635			
Midigated Operational William Operational The propertional operational opera		- Category	_	L Energy	Mobile	Offroad	Waste	Water	Total	w Commi		
# omm	ssior	- Ex	hibi	ţ 1 -	De	vělc	pm	ent	Revie	w Commi	ttee Sta	aff

₩ Par Dev	BalEEMod Version: CalEEMod.2013.2.2	IEEMod.20	13.2.2				Page	Page 9 of 35					Date: 3/2	25/2016	Date: 3/25/2016 4:01 AM	
nnir Zelc																
g Co	ROG	NOX	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio-CO2 Total CO2	Total CO2	CH4	N20	CO2e
JU Percent	ent 2.05 ction	52.78	52.39	16.57	0.00	53.20	3.06	0.00	51.13	9.84	0.00	1.61	1.58	0.57	0.12	1.55
nissio g Reviev	nissio	ij														
5		ומון														
	C⊟ Swstruction Phase J														ĺ	
ese Jage Bijga 1 1 1 1 1 1 1 1 1 1 1 1	Phase Name	ame		Phase Type	Ф	Start Date	ate	End Date		Num Days Week	um Days	Ph	Phase Description	tion		
ee - [Demolition		Demolition			1/1/2017		1/27/2017		2	20					
)ev - E	Site Preparation		Site Preparation	aration	L	1/28/2017		2/10/2017		5	10					
elc xhi	Grading		Grading			2/11/2017		3/24/2017		2	30					
pı Jid	Building Construction	uc	Building C	Building Construction		3/25/2017		5/18/2018		5	300					

20 20

2 5

6/15/2018 7/13/2018

5/19/2018

6/16/2018

Architectural Coating

Paving

Paving

Affects of Grading (Site Preparation Phase): 0 - O
Agres of Grading (Site Preparation Phase): 0 Agres of Grading (Grading Phase): 75 Agres of Grading (Grading Phase): 75 Agres of Grading (Grading Phase): 75 Agres of Paving: 0 Agree
Agres of Grading (Site Preparation Phase): 0 Agres of Grading (Grading Phase): 75 Agres of Paving: 0 Amount Usage Hours of 0 Agres of Paving: 0 Agree of Paving:
Agress of Grading (Site Preparation Phase): 0 Agres of Grading Phase): 75 Agres of Paving: 0 Agree of P
Agres of Grading (Site Preparation Phase): 0 Agres of Grading (Grading Phase): 75 Agres of Paving: 0 Ag
Agres of Grading (Site Prepar Agres of Grading (Grading Ph. Agres of Paving: 0 Agres of Paving: 0 Agresidential Indoor: 0; Resider (Agresidential Indoor: 0; Residential Ph. Agresidential Indoor: 0; Residential Ph. Agresidential Indoor: 0; Residential (Agresidential Indoor: 0; Residential (Agresidential Indoor: 0; Residential Indoor: 0; Residential (Agresidential Indoor: 0; Residential

- Development R e - Exhibit 7 - CE Corminissio**ក្ក** - E**ទូ**h ស្រី<u>ទ្</u>ទៃ1 - [ment Review Committee Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

O Baleemod Versi	BalEEMod Version: CalEEMod.2013.2.2 있 그	13.2.2			Page 10 of 35	35			Date: 3/25/2016 4:01	16 4:01
Under Collision	Rubi	Rubber Tired Dozers			2	8.00		255	0.40	
Site Preparation	Rubk	Rubber Tired Dozers			8	8.00		255	0.40	
C Sig Preparation	Trac	Tractors/Loaders/Backhoes	khoes		4	8.00		26	0.37	
	Exca	Excavators			2	8.00		162	0.38	
eding Espling	Graders	lers				8.00		174	0.41	
e W	Rubk	Rubber Tired Dozers			_	8.00		255	0.40	
	Scra	Scrapers			2	8.00		361	0.48	
Xeni On	Traci	Tractors/Loaders/Backhoes	khoes		2	8.00		97	0.37	
B Eding Construction	Cranes	ies			_	7.00		226	0.29	
Building Construction	Forklifts	lifts			e S	8.00		68	0.20	
Bullding Construction	Generat	Generator Sets				8.00		84	0.74	
T Bunding Construction	Traci	Tractors/Loaders/Backhoes	khoes		3	7.00		26	0.37	
☐ B@ding Construction	Welders	ders			7	8.00		46	0.45	
L 7	Pavers	ers			2	8.00		125	0.42	
ent - C	Pavii	Paving Equipment			2	8.00		130	0.36	
E C	Rollers	ers			2	8.00		80	0.38	
A Shitectural Coating	Air O	Air Compressors			7	0.00		78	0.48	
SOCUM TOCUM										
hents	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Haulir Vehicle (
Demolition	9	15.00	00:0	733.00	14.70	06.9	20.00	20.00 LD_Mix	HDT_Mix	HHDT
SKAP reparation		18.00	00.0	00.0	14.70	06.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Galaging	∞	20.00	00:0	00.0	14.70	06.90	20.00	LD_Mix	HDT_Mix	HHDT
Baiding Construction	б	286.00	112.00	00.0	14.70	06.9	20.00	20.00 LD_Mix	HDT_Mix	HHDT
P@ing	9	15.00	00.0	00.0	14.70	06.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT

										•
AM M						CO2e		36.8292	36.8292	
Date: 3/25/2016 4:01 AM	HHDT					N20		0.0000	0.0000	
a: 3/25/2	HDT_Mix					CH4	Į.	0.0101	0.0101	
Date	王					Total CO2	MT/yr	36.6182	36.6182	
	D_Mix					NBio- CO2		36.6182	36.6182	
	20.00 LD_Mix					Bio- CO2 N		0.0000	0.0000	
	6.90					PM2.5 Total		0.0198	0.0198	
						Exhaust PM2.5		0.0198	0.0198	
Page 11 of 35	14.70					Fugitive E		.		
Pa	0.00					PM10 F		0.0213	0.0213	
	00					Exhaust PM10		0.0213	0.0213	
	0.00					Fugitive E	tons/yr	<u></u>		
	57.00	_						4.0000e-	4.0000e- 004	
2013.2.2	1	truction			2	00		.3389 4.0	.3389 4.0	
EEMod.		s Cons		Ċ	10-u0	×OZ		4270 0.	4270 0.	Review Committee Staff Repo EEQA Documents
sion: Cal		1easure	<u>re</u> a	- 2017	ISTRUCTIO	908		0405 0.	0405 0.	
1od Vers	l Coating	ation M	osed Aı	olition .	led Con	<u>~</u>). 	0.0	
ZelEEN J	entectural	_ 1∫Mitiga	imienis	Demc	E E E E E E E E E E E E E E E E E E E	11 - 1	Category	Off-Road J	U⊖U:	: Review Committee Staff Repo
Dev	/elo	pme	nt Re	view	Comm	ittee	- EX	nibil	. 7 - (EQA Documents

Date: 3/25/2016 4:01 AM	C02e		24.3124	0.0000	1.4843	25.7967			CO2e		0.0000	18.2745	18.2745							
	N20	уг	00000.0 00000.0 00000.0	N20		0.0000	0.0000	0.0000												
te: 3/25//	CH4		1.7000e- 004	0.000.0	8.0000e- 005	2.5000e- 004			CH4	MT/yr	0.0000	5.5600e- 003	5.5600e- 003							
Dai	Total CO2	MT/yr	24.3087	0.0000	1.4827	25.7914			Total CO2	M	0.000.0	18.1577	18.1577							
	NBio- CO2		24.3087	0.0000	1.4827	25.7914			NBio- CO2		0.0000	18.1577	18.1577							
	Bio- CO2		0.0000	0.0000	0.0000	0.0000			Bio- CO2		0.0000	0.0000	0.0000							
	PM2.5 Total		3.0500e- 003	0.0000 0.0000 4.5000e- 003 003	PM2.5 Total		0.0497	0.0127	0.0623											
Page 13 of 35 ale Emod Version: CalEEMod.2013.2.2 ale Emod Version: CalEEMod.2013.2.2 ale ale Emod Version: CalEEMod.2013.2.2 ale ale Emod Version: CalEEMod.2013.2.2 ale ale Emod Version: CalEEMod.2013.2.2 by ale	Exhaust PM2.5	tons/yr				1.3200e- 003	0.000.0	1.0000e- 005	1.3300e- 003		Exhaust PM2.5		0.000.0	0.0127	0.0127					
	Fugitive PM2.5		1.7200e- 003	0.0000	4.4000e- 004	2.1600e- 003		Fugitive PM2.5		0.0903 0.0497		0.0497								
	PM10 Total		7.7200e- 003	0.0000	1.6600e- 003	9.3800e- 003					PM10 Total	0.0138	0.1041							
	Exhaust PM10		lyr .	/yr	/yr	s/yr	s/yr	:/yr	1.4400e- 003	0.0000	1.0000e- 005	1.4500e- 003			Exhaust PM10	/yr	0.0000	0.0138	0.0138	
	Fugitive PM10		6.2800e- 003	0.000.0	1.6500e- 003	ф.			Fugitive PM10	tons/yr	0.0903		0.0903							
	S02		2.7000e- 004	0.0000	2.0000e- 005	2.9000e- 004	600		S02			2.0000e- 004	2.0000e- 004							
	8		0.0774	0.0000	8.2900e- 003	0.0857	Site		8			0.1970	0.1970							
	×ON		0.0981	0.000.0	8.0000e- 004	0.0989	- 2017 tion On-		×ON			0.2588	0.2588							
	ROG		6.2000e- 003	0.0000	5.4000e- 004	6.7400e- 003	aration	T 3 Site Preparation - 2017 Oumitigated Construction On-Site D S O S O S O S O S O S O S O S	ROG			0.0242	0.0242							
Manning Wort Proposition	issior	- Category	Jipi Hauling	<u>i </u>	De,	√G Ok	_3.3 Site Prep Unimitigated C	Revie	w Co	mm ^{category}		Ogf-Road	aff Re	eport						
Attachment 3 - City										men										

AM	C02e		0.0000	0.0000	0.8906	0.8906			CO2e		0.0000	18.2745	18.2745
:016 4:0	N20	MT/yr	0.0000	0.0000	0.0000	0.0000		N20		0.0000	0.0000	0.0000	
Date: 3/25/2016 4:01 AM	CH4		0.0000 0.0000 5.00006- 005 005		CH4	'yr	0.0000	5.5600e- 003	5.5600e- 003				
Dat	Total CO2		0.0000	0.0000	0.8896	0.8896			Total CO2	MT/yr	0.000.0	18.1577	18.1577
	NBio- CO2		0.0000	0.0000	0.8896	0.8896			NBio- CO2		0.0000	18.1577	18.1577
	Bio- CO2		0.0000	0.0000	0.0000	0.0000			Bio- CO2		0.0000	0.0000	0.0000
	PM2.5 Total	tons/yr	0.0000	0.0000	2.7000e- 004	2.7000e- 004			PM2.5 Total		0.0194	0.0127	0.0320
Page 14 of 35	Exhaust PM2.5			0.0000	0.000.0	1.0000e- 005	1.0000e- 005		Exhaust PM2.5		0.000.0	0.0127	0.0127
	Fugitive PM2.5		0.0000	0.0000	2.6000e- 004	2.6000e- 004		Fugitive PM2.5		0.0194		0.0194	
	PM10 Total		0.0000 0.0000	0.0000	0.0000	1.0000e- 003	1.0000e- 003		PM10 Total		0.0352	0.0138	0.0490
	Exhaust PM10			s/yr	s/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005		Exhaust PM10	/yr	0.0000
	Fugitive PM10		0.000	0.0000	9.9000e- 004	9.9000e- 004		Fugitive PM10	tons/yr	0.0352		0.0352	
alEEMod Version: CalEEMod.2013.2.2 a b c c c c c c c c c c c c c c c c c c	S02		0.0000 0.0000 1.0000e- 005 005 SO2			2.0000e- 004	2.0000e- 004						
	8		0.000	0.0000	4.9700e- 003	4.9700e- 003	avi	8			0.1970	0.1970	
	×ON		0.000.0	0.0000	4.8000e- 004	4.8000e- 004	n On-Sit		×ON			0.2588	0.2588
Version:	ROG		0.000	0.0000	3.2000e- 004	3.2000e- 004	structio		ROG			0.0242	0.0242
ale EMod Amitigated (ssior	- Category	Jipi Hauling	Vendor	De/	√elob <u>f</u>	men i	Revie EQA [w Co	Category MMC	Trigitive Dust	e Sta	्ह aff R€

	CO2e		0.0000	0.0000	0.8906	0.8906		C02e		0.0000	86.4637	86.4637
Date: 3/25/2016 4:01 AM	N20	000	0.0000	0.0000	0.0000	0.0000		NZO		0.0000	0.0000	0.0000
	CH4	MT/yr	0.0000	0.000.0	5.0000e- 005	5.0000e- 005		CH4	MT/yr	0.0000	0.0263	0.0263
	Total CO2	M	0.0000	0.0000	0.8896	0.8896		Total CO2	TM	0.0000	85.9109	85.9109
	NBio- CO2		0.0000	0.0000	0.8896	0.8896		NBio- CO2		0.000	85.9109	85.9109
	Bio- CO2		0.0000	0.0000	0.0000	0.0000		Bio- CO2		0.0000	0.0000	0.0000
	PM2.5 Total		0.0000	0.0000	2.7000e- 004	2.7000e- 004		PM2.5 Total		0.0540	0.0458	0.0997
	Exhaust PM2.5	s/yr		0.0000	1.0000e- 005	1.0000e- 005		Exhaust PM2.5		0.0000	0.0458	0.0458
Page 15 of 35	Fugitive PM2.5			2.6000e- 004	2.6000e- 004		Fugitive PM2.5		0.0540		0.0540	
	PM10 Total		0.0000	0.0000	1.0000e- 003	1.0000e- 003		PM10 Total		0.1301	0.0498	0.1799
	Exhaust PM10		s/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005		Exhaust PM10	'/yr	0.0000	0.0498
	Fugitive PM10	tons/yr	0.0000	0.0000	9.9000e- 004	9.9000e- 004		Fugitive PM10	tons/yr	0.1301		0.1301
	SO2		0.0000	0.0000	1.0000e- 005	1.0000e- 005		S02			9.3000e- 004	9.3000e- 004
Φļ	8		0.0000	0.0000	4.9700e- 003	4.9700e- 003	Site	00			0.7021	0.7021
n Off-Sit	×ON		0.0000	0.0000	4.8000e- 004	4.8000e- 004	tion On-	×ON			1.0439	1.0439
<u>ıstructio</u>	ROG		0.0000	0.0000	3.2000e- 004	3.2000e- 004	- 2017 <u>Sonstruc</u>	ROG			0.0915	0.0915
Mitigated Construction Off-Site	issior	- Category	JOI Hauling	t 1 -	De/	√elob	Grading - 2017 Solution on Site to the construction of the construction o	w Co	Category Category	Agitive Dust	Off-Road	₽ff Re

CO2e

CO2e

N A	CO2e		0.0000	0.0000	2.9685	2.9685			CO2e		240.7169	240.7169										
Date: 3/25/2016 4:01 AM	N20	tons/yr	0.0000	0.0000	0.0000	0.0000			N20		0.0000	0.0000										
	CH4		0.0000	0.0000	1.5000e- 004	1.5000e- 004			CH4	/yr	0.0589	0.0589										
	Total CO2		MT	MT	0.0000	0.0000	2.9653	2.9653			Total CO2	MT/yr	239.4791	239.4791								
	NBio- CO2		0.0000	0.0000	2.9653	2.9653			NBio- CO2		239.4791	239.4791										
	Bio- CO2		0.0000	0.0000	0.0000	0.0000		Bio- CO2		0.0000	0.0000											
Page 17 of 35 alEEMod Version: CalEEMod.2013.2.2 or o	PM2.5 Total		0.0000	0.0000	9.0000e- 004	9.0000e- 004		PM2.5 Total		0.1673	0.1673											
	Exhaust PM2.5				1									0.0000 0.0000 2.0000e- 005 005	2.0000e- 005			Exhaust PM2.5		0.1673	0.1673	
	Fugitive PM2.5		0.0000	0.0000	8.7000e- 004	8.7000e- 004		Fugitive PM2.5														
	PM10 Total		ons/yr	0.0000	0.0000	3.3200e- 003	3.3200e- 003			PM10 Total		0.1781	0.1781									
	Exhaust PM10			s/yr	s/yr	s/yr	s/yr	s/yr	s/yr	s/yr	s/yr	s/yr	0.00000 0.00000	3.0000e- 005	3.0000e- 005			Exhaust PM10	s/yr	0.1781	0.1781	
	Fugitive PM10			0.0000	0.0000	3.2900e- 003	3.2900e- 003		Fugitive PM10	tons/yr												
	802		0.0000	0.0000	4.0000e- 005	4.0000e- 005			S02		2.6800e- 003	2.6800e- 003										
	8		0.0000	0.0000	0.0166	0.0166	. 2017 -Site		00		1.8129	1.8129										
	×ON		0.0000	0.0000	1.5900e- 003	1.5900e- 003	uction - tion On-		XON		2.6406	2.6406										
Version: nstructio	ROG		0.0000	0.0000	1.0800e- 003	1.0800e- 003	Constr		ROG		0.3102	0.3102										
Panning Wommi Panning Wommi Development Re	issior eview	- Category		t 1 -		velok		evie:	v Co	mm(category	itte	e Sta	ff Report									
Attachment 3 - City																						

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

TaleEMod Version: CalEEMod.2013.2.2

Value of the control of the c

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

AM	CO2e		0.0000	106.8643	136.2130	243.0773			CO2e		20.5019	0.0000	20.5019	
Date: 3/25/2016 4:01 AM	NZO		0.0000	0.0000	0.0000	0.0000			N2O		0.0000	0.0000	0.0000	
te: 3/25/2	CH4	MT/yr	0.0000	7.7000e- 004	6.7800e- 003	7.5500e- 003			CH4	MT/yr	6.3400e- 003	0.0000	6.3400e- 003	
Da	Total CO2	M	0.0000	106.8481	136.0707	242.9187			Total CO2	M	20.3687	0.0000	20.3687	
	NBio- CO2		0.0000	106.8481	136.0707	242.9187			NBio- CO2		20.3687	0.0000	20.3687	
	Bio- CO2		0.0000	0.0000	0.0000	0.0000			Bio- CO2		0.0000	0.0000	0.0000	
	PM2.5 Total		0.0000	0.0160	0.0428	0.0588			PM2.5 Total		8.6400e- 003	0.0000	8.6400e- 003	
of 35	Exhaust PM2.5		0.0000	6.1300e- 003	1.1600e- 003	7.2900e- 003			Exhaust PM2.5		8.6400e- 003	0.0000	8.6400e- 003	
Page 21 of 35	Fugitive PM2.5		0.0000	9.8400e- 003	0.0417	0.0515			Fugitive PM2.5					
<u>.</u>	PM10 Total		0.0000	0.0411	0.1581	0.1993			PM10 Total		9.3900e- 003	0.0000	9.3900e- 003	
	Exhaust PM10	s/yr	0.0000	6.6700e- 003	1.2500e- 003	7.9200e- 003			Exhaust PM10	s/yr	9.3900e- 003	0.0000	9.3900e- 003	
	Fugitive PM10	tons/yr	0.0000	0.0345	0.1569	0.1914			Fugitive PM10	tons/yr				
2.2	S02		0.0000	1.2100e- 003	1.9300e- 003	3.1400e- 003			802		2.2000e- 004		2.2000e- 004	
od.2013.	00		0.0000	0.5925	0.7157	1.3083		-51C	00		0.1449		0.1449	
CalEEMc	XON		0.0000	0.4247	0.0690	0.4936		O LOD	XON		0.1716		0.1716	
Version: <u>1structio</u>	ROG		0.0000	0.0426	0.0461	0.0888	2018	Construc	ROG		0.0161	8.1600e- 003	0.0243	
allEEMod Version: CalEEMod.2013.2.2 a lead of the construction off-Site b lead of the construction off-Site where the construction of the c	issior	- Category	JID!	Vendor	Dev	velok	3∰ Baving -	Revie	w Co	UCategory	Off-Road	e Sta	₽ aff Re	epor
Development Re			mm	nite	e - E	MINX	π / - (∠EQA [Jocu	mer	าเร			-

AM	CO2e		0.0000	0.0000	1.4288	1.4288			CO2e		20.5019	0.0000	20.5019	
2016 4:01	NZO		0.0000	0.000.0	0.0000	0.0000			NZO		0.0000	0.0000	0.0000	
Date: 3/25/2016 4:01 AM	CH4	/yr	0.000.0	0.0000	7.0000e- 005	7.0000e- 005			CH4	MT/yr	6.3400e- 003	0.0000	6.3400e- 003	
Da	Total CO2	MT/yr	0.0000	0.0000	1.4273	1.4273			Total CO2	TM	20.3687	0.0000	20.3687	
	NBio- CO2		0.0000	0.0000	1.4273	1.4273			NBio- CO2		20.3687	0.000.0	20.3687	
	Bio- CO2		0.0000	0.0000	0.0000	0.0000			Bio- CO2		0.0000	0.0000	0.0000	
	PM2.5 Total		0.0000	0.0000	4.5000e- 004	4.5000e- 004			PM2.5 Total		8.6400e- 003	0.0000	8.6400e- 003	
of 35	Exhaust PM2.5		0.000.0	0.000.0	1.0000e- 005	1.0000e- 005			Exhaust PM2.5		8.6400e- 003	0.0000	8.6400e- 003	
Page 22 of 35	Fugitive PM2.5		0.0000	0.0000	4.4000e- 004	4.4000e- 004			Fugitive PM2.5					
L.	PM10 Total		0.0000	0.0000	1.6600e- 003	1.6600e- 003			PM10 Total		9.3900e- 003	0.000.0	9.3900e- 003	
	Exhaust PM10	s/yr	0.000	0.0000	1.0000e- 005	1.0000e- 005			Exhaust PM10	s/yr	9.3900e- 003	0.0000	9.3900e- 003	
	Fugitive PM10	tons/yr	0.0000	0.0000	1.6500e- 003	1.6500e- 003			Fugitive PM10	tons/yr				
2	S02		0.0000	0.0000	2.0000e- 005	2.0000e- 005			S02		2.2000e- 004		2.2000e- 004	
od.2013.2	00		0.000	0.0000	7.5100e- 003	7.5100e- 003	e.	ı	00		0.1449		0.1449	
CalEEMc	NOX		0.0000	0.0000	7.2000e- 004	7.2000e- 004	n On-Sit		NOX		0.1716		0.1716	
Version:	ROG		0.0000	0.0000	4.8000e- 004	4.8000e- 004	nstructio		ROG		0.0161	8.1600e- 003	0.0243	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale aleeMod Version: CalEEMod.2013.2.2 ale aleeMod Version: CalEEMod.2013.2.2 ale aleeMod Version: CalEEMod.2013.2.2 ale aleeMod.2013.2.2 ale aleeMod Version: CalEEMod.2013.2.2 ale aleeMod.2013.2.2 ale aleeMod.2013.2 al	issior eviev	Y Co	Jipi Jipi	L 1 -	: _	xhipi		Revie [,] EQA D	w Co	men men	I.	e Sta	aff Re	eport
Attachment 3 City			^om	micc	ion E) Anort	t and Ev	vhihits	Λnril	05 20	า1 ย			

AM	CO2e		0.0000	0.0000	1.4288	1.4288			CO2e		0.0000	2.5584	2.5584	
Date: 3/25/2016 4:01 AM	NZO		0.0000	0.0000	0.0000	0.0000			NZO		0.0000	0.0000	0.0000	
te: 3/25/;	CH4	MT/yr	0.0000	0.0000	7.0000e- 005	7.0000e- 005			CH4	MT/yr	0.0000	2.4000e- 004	2.4000e- 004	
Da	Total CO2	M	0.0000	0.0000	1.4273	1.4273			Total CO2	M	0.0000	2.5533	2.5533	
	NBio- CO2		0.0000	0.0000	1.4273	1.4273			NBio- CO2		0.0000	2.5533	2.5533	
	Bio- CO2		0.0000	0.0000	0.0000	0.0000			Bio- CO2		0.0000	0.0000	0.0000	
	PM2.5 Total		0.0000	0.0000	4.5000e- 004	4.5000e- 004			PM2.5 Total		0.000.0	1.5100e- 003	1.5100e- 003	
35	Exhaust PM2.5		0.0000	0.000.0	1.0000e- 005	1.0000e- 005			Exhaust PM2.5		0.000.0	1.5100e- 003	1.5100e- 003	
Page 23 of 35	Fugitive PM2.5		0.0000	0.0000	4.4000e- 004	4.4000e- 004			Fugitive PM2.5					
ш	PM10 Total		0.0000	0.0000	1.6600e- 003	1.6600e- 003			PM10 Total		0.0000	1.5100e- 003	1.5100e- 003	
	Exhaust PM10	/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005			Exhaust PM10	/yr	0.0000	1.5100e- 003	1.5100e- 003	
	Fugitive PM10	tons/yr	0.0000	0.0000	1.6500e- 003	1.6500e- 003			Fugitive PM10	tons/yr				
2	S02		0.0000	0.0000	2.0000e- 005	2.0000e- 005			S02			3.0000e- 005	3.0000e- 005	
od.2013.2	8		0.0000	0.0000	7.5100e- 003	7.5100e- 003	2018 -Site		8			0.0185	0.0185	
CalEEMc	×ON		0.0000	0.0000	7.2000e- 004	7.2000e- 004	ating - 2		×ON			0.0201	0.0201	
/ersion: (ROG		0.0000	0.0000	4.8000e- 004	4.8000e- 004	tural Co Sonstruc		ROG		0.7164	2.9900e- 003	0.7194	
alEEMod Version: CalEEMod.2013.2.2 National Construction Off-Site University and Construction Off-Site	ssior	- Category	Jipi Hauling	- Vendor	Dev orker	VOIO Total	் 3 Architectural Coating - 2018 ் பூmitigated Construction On-Site	devie	w Co	mm(category	Arthit. Coating O	Off-Road	off R€	epo

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

$\overline{}$
⋛
1
_
$\overline{}$
0
4:01
9
$\overline{}$
0
\sim
~
2
S
⅍
3/25/201
(D)
₽
Date:
\cap
_

W	CO2e		0.0000	0.000.0	5.4295	5.4295	•			CO2e	
Date: 3/25/2016 4:01 AM	NZO		0.0000	0.0000	0.0000	0.0000				NZO	
e: 3/25/2	CH4	5	0.0000	0.000.0	2.7000e- 004	2.7000e- 004				CH4	Ϋ́
Dat	Total CO2	MT/yr	0.0000	0.000.0	5.4238	5.4238				Total CO2	MT/yr
	NBio- CO2		0.0000	0.0000	5.4238	5.4238				NBio- CO2	
	Bio- CO2		0.0000	0.0000	0.0000	0.0000				Bio- CO2	
	PM2.5 Total		0.0000	0.0000	1.7100e- 003	1.7100e- 003				PM2.5 Total	
of 35	Exhaust PM2.5		0.0000	0.000.0	5.0000e- 005	5.0000e- 005				Exhaust PM2.5	
Page 25 of 35	Fugitive PM2.5		0.0000	0.0000	1.6600e- 003	1.6600e- 003				Fugitive PM2.5	
T.	PM10 Total		0.0000	0.0000	6.3000e- 003	6.3000e- 003				PM10 Total	
	Exhaust PM10	tons/yr	0.0000	0.0000	5.0000e- 005	5.0000e- 005				Exhaust PM10	tons/yr
	Fugitive PM10	ton:	0.0000	0.0000	6.2500e- 003	6.2500e- 003				Fugitive PM10	toni
5.2	S02		0.0000	0.0000	8.0000e- 005	8.0000e- 005				S02	
od.2013.	8		0.0000	0.0000	0.0285	0.0285	Aobile	obile		0	
CalEEM	Ň		0.0000	0.0000	2.7500e- 003	2.7500e- 003	etail - N	ures Mo		×ON	
Version: Instruction	ROG		0.0000	0.0000	1.8400e- 003	1.8400e- 003	ional D	on Meas		ROG	
Sale EMod Version: Cale EMod 2013.2.2 Bale EMod Version: Cale EMod 2013.2.2 Bale EMod Version: Cale EMod 2013.2.2 Cale EMod Version: Cale EMod 2013.2.2 Cale EMod 2013.2.2 Attachment 3 - City Part Construction Off-Site	ssior	- Category	UHauling I Hauling	Vendor	Dev	√G Ok Istoria	4.4 Operati	4.9 Witigatic	w Com	mitte	(Deategory
Development Re Attachment 3 - City P	eviev Plann	V Co ing C	mm Com	iitte missi	e - E on R	xhibi Report	t 7 - C t and E	EÕA [xhibits	Oocume - April 0	ents 5, 201	8

)	_
2	<u>a</u>
)	2
	_
	2
	R E Witigation Measures Mobile
	<u> </u>
	Ū
	7
5	Š
	_
2	5
	‡
	2
,	.≟
7	Ē
4	
ľ	KG
_	$- \checkmark$
_	LU.

nı																
nitt∈	ROG	NOx	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Bio- CO2 NBio- CO2 Total CO2 CH4	CH4	N20	CO2e
Category StS					tons/yr	s/yr							MT/yr	'yr		
Mitigated					1.3370			0.3282	0.000.0			0.0000	0.000.0 0.000.0 0.000.0	0.000.0	0.0000	0.0000
⊘ nmitigated ○					1.3370	0.0000	1.3370	0.3282	0.000.0	0.3282	0.000	0.0000	0.000.0	0.000.0	0.0000	0.0000

O			אימומטה איז	Average Daily Trip hate	1)	5	Oriningated		Mingared
P		Weekday		Saturday	Sunday	Ann	Annual VMT		Annual VMT
Manufacturing		1,176.56		458.92	190.96	4,1	4,132,646		4,132,646
(D) Other Non-Asphalt Surfaces	urfaces	00.00	0:	00.0	00.00				
Parking Lot		0.00	00	0.00	0.00				
ری <		1,176.56		458.92	190.96	4,1	4,132,646		4,132,646
Com		Miles			Trip %			Trip Purpose %	% eso
Eand Use	H-W or C-W	H-S or C-C	H-O or C-NW H-W or C-W H-S or C-C	H-W or C-W	/ H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Manufacturing	16.60	8.40	06.9	59.00	28.00	13.00	92	2	С
Wher Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Parking Lot	16.60	8.40	6.90	00:00	0.00	0.00	0	0	0
ıff Re									
OLDA LDT1 LC	LDT2 MDV	/ LHD1	LHD2	MHD	H	OBUS	UBUS	MCY	SBUS

alEEMod Version: CalEEMod.2013.2.2	Version:	CalEEMo	od.2013.2	2.2			ш	Page 27 of 35	of 35				Dat	e: 3/25/2	Date: 3/25/2016 4:01 AM	AM
744000	0.000000	0.000000	0.000000		0.084000	0.00000	0.046000	0.046000		0.000000	0.000000	0.000000	0.000582	582	0.002128	
Energy Detail	Detail															_
Fleet Mix																
orical Energy Use: N	rgy Use:	z														
Mitigatio	n Meas	Mitigation Measures Energy	ergy													
	ROG	×ON	8	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
ategory					ton	tons/yr							MT/yr	yr		
lectricity fitigated						0.0000	0.0000		0.0000	0.0000	0.0000	2,193.7841 2,193.7841	2,193.7841	0.0480	9.9300e-	2,197.8700
lectricity mitigated						0.0000	0.0000		0.000.0	0.0000	0.0000	2,193.7841 2,193.7841	2,193.7841	0.0480	9.9300e-	2,197.8700
aturalGas Aitigated	0.0553	0.5026	0.4222	3.0200e- 003		0.0382	0.0382		0.0382	0.0382	0.000.0	547.1562	547.1562	0.0105	0.0100	550.4861
aturalGas mitigated	0.0553	0.5026	0.4222	3.0200e- 003		0.0382	0.0382		0.0382	0.0382	0.000.0	547.1562	547.1562	0.0105	0.0100	550.4861

Planning Committee - Exhibit 7 - CEQA Documents

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Date: 3/25/2016 4:01 AM	
Page 28 of 35	

	CO2e		0.0000	0.0000	550.4861	550.4861			CO2e		0.0000	0.0000	550.4861	550.4861
	N2O		0.0000	0.0000	0.0100	0.0100			N20		0.0000	0.0000	0.0100	0.0100
	CH4	/yr	0.0000	0.0000	0.0105	0.0105			CH4	/yr	0.0000	0.0000	0.0105	0.0105
	Total CO2	MT/yr	0.0000	0.0000	547.1562	547.1562			Total CO2	MT/yr	0.0000	0.0000	547.1562	547.1562
	NBio- CO2		0.0000	0.000.0	547.1562	547.1562			NBio- CO2		0.0000	0.000.0	547.1562	547.1562
	Bio- CO2		0.000.0	0.000.0	0.000.0	0.0000			Bio- CO2		0.000.0	0.000.0	0.000.0	0.0000
	PM2.5 Total		0.0000	0.0000	0.0382	0.0382			PM2.5 Total		0.0000	0.0000	0.0382	0.0382
	Exhaust PM2.5		0.0000	0.000.0	0.0382	0.0382			Exhaust PM2.5		0.0000	0.000.0	0.0382	0.0382
	Fugitive PM2.5								Fugitive PM2.5		•••••			
	PM10 Total		0.000.0	0.000.0	0.0382	0.0382			PM10 Total		0.000.0	0.000.0	0.0382	0.0382
	Exhaust PM10	/yr	0.0000	0.0000	0.0382	0.0382			Exhaust PM10	/yr	0.0000	0.0000	0.0382	0.0382
	Fugitive PM10	tons/yr							Fugitive PM10	tons/yr				
	802		0.000.0	0.0000	3.0200e- 003	3.0200e- 003			SO2		0.000.0	0.000.0	3.0200e- 003	3.0200e-
ın	8		0.000.0	0.000.0	0.4222	0.4222			00		0.000.0	0.000.0	0.4222	0.4222
	×ON		0.0000	0.0000	0.5026	0.5026			×ON		0.0000	0.0000	0.5026	0.5026
	ROG		0.0000	0.0000	0.0553	0.0553			ROG		0.0000	0.0000	0.0553	0.0553
by Land U	NaturalGas Use	kBTU/yr	0	0	1.02533e+007				NaturalGas Use	kBTU/yr	0	0	1.02533e+007	
HOSA Energy by Land Use - NaturalGas 단 보이때itigated	nmiksion	-Land Use	Applat Surfaces	Parking Lot	·i	D Total	men	Revie	2W C (Tand Use	Amhalt Surfaces	Parking Lot	Manufacturing 1	Total

		CO2e		2,054.0030	0.0000	143.8670	2,197.8700		CO2e		2,054.0030	0.0000	143.8670	2,197.8700
		N20	MT/yr	9.2800e- 003	0.000.0	3.1400e- 6.5000e- 003 004	9.9300e- 003		N20	MT/yr	9.2800e- 003	0.000.0	6.5000e- 004	9.9300e- 003
13.2.2	ricity	CH4	M	0.0449	0.0000	3.1400e- 003	0.0480		CH4	TM	0.0449	0.0000	3.1400e- 003	0.0480
:EMod.20	- Elect	Total CO2		2,050.1845	0.0000	143.5996	2,193.7841		Total CO2		2,050.1845	0.0000	143.5996	2,193.7841
ı: CalE	d Use		tons/yr							tons/yr				
lod Version	yy by Lan <u>ed</u>	Electricity Use	kW h/yr	3.40956e+006	0	238813			Electricity Use	kWh/yr	3.40956e+006	0	238813	
ale EM	Electricity Munitigated The part of the second of the se	issior	EX	Marufacturing	Other Non- Asphalt	Hering Lot	. (À rotal : O	men uta ated mentukeviev	v Cc	III Use ∭	Manupfacturing	Other Non- Sphalt	of R	DOI fea IB
Devé Attachm	elopment Re nent 3 - City F	eviev Plann	v Co ing C		1110	L	MIIIM	t 7 - CEQA D and Exhibits	<i>i</i> OCu	шеп	TS			

	Measures Area	SOG NOx		.9452 5.0000e- 5 005	.9452 5.0000e- 5	Area by SubCategory Beyond B	SOG NOx		.4841	2.4607	5.1000e- 5.0000e- 5 004 005
	_	8		5.3600e- 003	5.3600e- 003		8		ļ		5.3600e- (003
		SO2 Fugitive PM10		0.0000	0.0000		SO2 Fugitive PM10				0.0000
		ve Exhaust 0 PM10	tons/yr	2.0000e- 005	2.0000e- 005		ve Exhaust 0 PM10	tons/yr	0.0000	0.0000	2.0000e- 005
		PM10 Total			2.0000e- 005		PM10 Total		0.0000	0.0000	2.0000e- 005
		Fugitive PM2.5					Fugitive PM2.5				
		Exhaust PM2.5	1	2.0000e- 005	2.0000e- 005		Exhaust PM2.5		0.0000	0.0000	2.0000e- 005
		PM2.5 Total		2.0000e- 005	2.0000e- 005		PM2.5 Total		0.000.0	0.000.0	2.0000e- 005
		Bio- CO2	•	0.0000	0.0000		Bio- CO2		0.0000	0.0000	0.000.0
		NBio- CO2		0.0103	0.0103		NBio- CO2 T		0.0000	0.000.0	0.0103
		Total CO2	MT/yr	0.0103	0.0103		Total CO2	MT/yr	0.0000	0.000.0	0.0103
		CH4	_	3.0000e- 005	3.0000e- 005		CH4		0.0000	0.000.0	3.0000e- 005
		NZO		0.000.0	0.0000		NZO		0.000.0	0.000.0	0.000.0

	ROG	NOX	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Bio- CO2 NBio- CO2 Total CO2	CH4	N20	C02e
lbCategory I					tons/yr	s/yr							MT/yr	/yr		
chitectural Coating	0.4841					0.000.0	0.000.0		0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.0000
onsumer Products	2.4607					0.000.0	0.000.0		0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.0000
ndscaping	5.1000e- 004	5.0000e- 005	5.3600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0103	0.0103	3.0000e- 005	0.0000	0.0109
Total	2.9452	5.0000e- 5.3600e- 005 003	5.3600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0103	0.0103	3.0000e- 005	0.0000	0.0109
Water Detail	Jotoil															

632.0694 Attachment 3 - City Planning Commission Resonance Water Detail

Development Review Mater Detail

Development Review Committee - Exhibit 7 - CEQA Documents

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018 CO2e

	C02e		632.0694	0.0000	0.0000	632.0694			C02e		632.0292	0.0000	0.0000	632.0292	
	N2O	MT/yr	0.0574	0.0000	0.0000	0.0574			N2O	MT/yr	0.0573	0.0000	0.0000	0.0573	
13.2.2	CH4	TM	0.6713	0.0000	0.0000	0.6713			CH4	TM	0.6709	0.000.0	0.0000	0.6709	
:Mod.20	Total CO2		600.1766	0.0000	0.0000	600.1766			Total CO2		600.1766	0.0000	0.0000	600.1766	
CalEE Jse		tons/yr								tons/yr					
od Version: by Land U	Indoor/Outdoor Use	Mgal	71.225 / 2.59181	0/0	0/0				Indoor/Outdoor Use	Mgal	71.225 / 2.59181	0/0	0/0		
DaleEMod Version: CalEEMod.2013.2.2 Solution of the state of the stat	ssior	Land Use	Madufacturing	Other Non- Asphalt	©aking Lot ○	Total	Meu T igated	Revie	w Co	mu t a Muse	Martufacturing	Other Non-	Hering Lot	O Total O	rt
Development Re	VIEV	V CO	mm	Itte	2 - E	xnibi	t 7 - C	eqa e	ocu	men	TS				-

								C02e		.028.98	0.0000	0.0000	.028.98
2		CO2e		86.8707	86.8707			N20	MT/yr	0.0000	0.0000	0.0000	0.0000
2013.2.	e e	NZO	١,	0.000.0	0.0000			CH4	TM	2.2908	0.0000	0.0000	2.2908
EEMod.	is Wast	CH4	V/LW	2.2908	2.2908	0		Total CO2		38.7632	0.0000	0.0000	38.7632
on: Call	easure	Total CO2		38.7632	38.7632	nd Use		D	tons/yr				
d Versi	ion Me		tons/yr			by Lai	5I	Waste Disposed	tons	190.96	0	0	
BaleeMo 84 Waste	B ⊕ Maste M	- Exh	ibit 1	, Mitigated	O√ Dwitigated	8 Waste by L	eview	Cor	nt Tand Use	Menufacturing (Asphalt	Parking Lot	bor <u>of</u>
Develo Attachme	pment Review nt 3 - City Plannir	Cor ng Co	nmiti ommi	ee ssior	- Ext n Re _l	hibit 7 - CE port and Ex	EQA Do khibits - A	cun	nents	S			

Fuel Type	0.20 CNG	0.74 Diesel	
Load Factor	0.20	0.74	
Horse Power	68	84	
Days/Year	260	12	
Hours/Day	8.00	1.67 1.67 12 84 0.74 Diesel	
Number	င		

Review Committee Staff Report

Date: 3/25/2016 4:01 AM	
Page 35 of 35	
IEEMod.2013.2.2	

	CO2e		53.8932	0.7089	54.6020	
	NZO		0.0000 53.8932	0.0000	0.0000	
	CH4	MT/yr	0.0169	0.7079 4.0000e- 0.0000 005	0.0170	
	Total CO2	M	0.0000 53.5375 53.5375 0.0169	0.7079	54.2454	
	NBio- CO2		53.5375	0.7079	54.2454	
	Bio- CO2		0.0000	0.0000	0.0400 0.0000	
	PM2.5 Total		0.0397	2.8000e- 004	0.0400	
	Exhaust PM2.5		0.0397	2.8000e- 2.8000e- 0.0000 0.7079 004	0.0400	
	Fugitive PM2.5					
	PM10 Total		0.0432	2.8000e- 004	0.0434	
	Exhaust PM10	٧٢	0.0432	2.8000e- 2.8000e- 004 004	0.0434	
	Fugitive PM10	tons/yr				
	SO2		6.0000e- 004	1.0000e- 005	6.1000e- 004	
	8		0.4657	1.6600e- 003	0.4704	
	×		0.5570	4.7300e- '	0.5618	u o
	ROG		0.0624	5.6000e- ²	0.0629	getati
a Con	miss	- Agi	∰ Exh	Tets Tets	lag 12- D	evelopment Review Committee Staff Rep

anning Commission - Exhibit 1 - Development Review Committee Staff R evelopment Review Committee - Exhibit 7 - CEQA Documents	?eport

Lot Acreage South Coast Air Basin, Summer **Center Street Warehouse** 1000sqft Metric Page 1 of 31 308.00 Size Tale Emod Version: Cale Emod. 2013.2.2

ale Emod Version: Cale Emod. 2013.2.2

ale Emod. Emod. 2013.2

ale E Manufacturing Land Uses

Date: 3/25/2016 3:55 AM

Population

Floor Surface Area

0 0

2.33 6.23

1000sqft

101.59

Other Non-Asphalt Surfaces

Parking Lot

6.23

Acre

271,378.80 101,590.00 308,000.00

2019 31 0.006 Precipitation Freq (Days) Operational Year N2O Intensity (Ib/MWhr) 0.029 2.2 Wind Speed (m/s) CH4 Intensity (Ib/MWhr) ou of the control of

Vericle Trips -Vericle Emission Factors - Fleet Mix Per Traffic Study

Achicle Emission Factors - Fleet Mix Per Traffic Study

Achicle Emission Factors - Fleet Mix Per SCAQMD Recommendation

Exhibit 1 Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Date: 3/25//	t 3 2005 Survey	New Value	37.00	37.00	12.00	CNG	1.67	3.00	1.00	2019	190.96	0.13	0.13	0.74	0.74	0.74	00.0	00.0	0:00	0:00	00.0	00:0
Page 2 of 31	ate Water Budget Workshee'	Default Value	250.00	250.00	260.00	Diesel	8.00	0.00	0.00	2014	381.92	0.03	0.03	0.51	0.51	0.51	90:0	90.0	0.06	0.18	0.18	0.18
013.2.2	andscape Water Demand using State Water Budget Worksheet sycling Requirement Mitigation - Water 3 times daily Assume Forklifts and Generator Set Equipment per ERG/ARB 2005 Survey SCE Outage Data	Column Name	EF_Nonresidential_Exterior	EF_Nonresidential_Interior	OperDaysPerYear	OperFuelType	OperHoursPerDay	OperOffRoadEquipmentNumber	OperOffRoadEquipmentNumber	OperationalYear	SolidWasteGenerationRate	OH.	OH.	LDA	LDA	LDA	LDT1	LDT1	LDT1	LDT2	LDT2	LDT2
BalEEMod Version: CalEEMod.2	A Water And Wastewater - Include Landscape V Selid Waste - 50% Mandatory Recycling Requination Off-road Equipment Mitigation - V Construction Off-Road Equipment - Assume For Agenerators Operatiosn Based on SCE Outage	Table Name	tblArchitecturalCoating	X tblArchitecturalCoating	tblOperationalOffRoadEquipment	—tblOperationalOffRoadEquipment	ptbIOperationalOffRoadEquipment	tblOperationalOffRoadEquipment	tblOperationalOffRoadEquipment	tblProjectCharacteristics	tblSolidWaste) tblVehicleEF	tblVehicleEF	tblVehicleEF) tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tbl/ehicleEF	tblVehicleEF	J tblVehicleEF	tblVehicleEF

Date: 3/25/2	0.08	0.08	0.09	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	97.79
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0	0.0	0.0	0.0	0.0	0.0	0.0	.o	0.0	0.0	0.	0.0	0.0	76
Page 3 of 31	0.04	0.04	0.04	6.6660e-003	6.6660e-003	6.6660e-003	4.3770e-003	4.3770e-003	4.3770e-003	0.14	0.14	0.14	2.1280e-003	2.1280e-003	0.02	0.02	0.02	1.9400e-003	1.9400e-003	1.9400e-003	5.8200e-004	5.8200e-004	2.4960e-003	2.4960e-003	2.4960e-003	87.46
3.2.2			LHD1	LHD2	LHD2	LHD2	MCY	MCY	MCY	MDV	MDV	MDV	НМ	МН	MHD	МНБ	MHD	OBUS	OBUS	OBUS	SBUS	SBUS	UBUS	UBUS	NBUS	AerobicPercent
المالية المال	tblVehicleEF	tblVehicleEF											tbIVehicleEF								tbIVehicleEF		tbIVehicleEF		tbIVehicleEF	tblWater
Přaní Deve	nin	g (xhi				ve Exr			ent	Re					nitt nts		Sta	aff	Re	ро

		00				
97.79	97.79	2,591,811.0	00:00	00.00	0.00	
87.46	87.46	0.00	10.33	10.33	10.33	
AerobicPercent	AerobicPercent	OutdoorWaterUseRate	SepticTankPercent	SepticTankPercent	SepticTankPercent	
tblWater	tblWater	tblWater	tblWater	tblWater	tblWater	- Expibit 1 - Development Review Committee Staff Review Committee - Exhibit 7 - CEQA Documents
	verobicPercent 87.46	Nerobic Percent 87.46 Aerobic Percent 87.46	NerobicPercent 87.46 RenobicPercent 87.46 IoortWaterUseRate 0.00 2,5	Probic Percent R7.46 IoorWaterUseRate pticTankPercent 10.33	Nerobic Percent 87.46 Nerobic Percent 87.46 NoorWaterUseRate 0.00 pticTank Percent 10.33	Nerobic Percent 87.46 Nerobic Percent 87.46 IoorWaterUseRate 0.00 pticTank Percent 10.33 pticTank Percent 10.33

CO SO2 Fugitive Exh	lb/day	0.0917 18.2675	42.7975 0.0916 3.8970 1.6	90.7766 0.1832 22.1645 4.9	CO SO2 Fugitive Exh	lb/day	47.9791 0.0917 7.2470 3.3	42.7975 0.0916 3.8970 1.6	90.7766 0.1832 11.1440 4.9	CO SO2 Fugitive Ex
Exhaust PM10 PM10 Total		3.3190 21.0233	1.6522 5.5491	4.9711 26.5724	Exhaust PM10 Total		3.3190 10.0029	1.6522 5.5491	4.9711 15.5520	Exhaust PM10 PM10
Fugitive Exhaust PM2.5			1.0472 1.5501	11.0313 4.6036	Fugitive Exhaust PM2.5		3.9263 3.0535	1.0472 1.5501	4.9736 4.6036	Fugitive Exhaust PM2.5 PM2.5
PM2.5 Bi			2.5974 0	15.1168 0	PM2.5 Bi		6.4617	2.5974 (9.0591	PM2.5 Total
Bio- CO2 NBio- CO2			0.0000 8,124.1481	0.0000 16,440.2301	Bio- CO2 NBio- CO2	_	0.0000 8,316.0820	0.0000 8,124.1481	0.0000 16,440.2301	Bio- CO2 NBio-CO
Total CO2	lb/day	8,316.0820	8,124.1481	16,440.2301 16,440.2301	Total CO2	lb/day	8,316.0820	8,124.1481	16,440.2301	NBio-CO2 Total CO2
CH4 N2O			0.8050 0.0000	2.7506 0.0000	CH4 N2O		1.9457 0.0000	0.8050 0.0000	2.7506 0.0000	CH4 N20
COZe		8,356.9409	8,141.0521	16,497.9930	CO2e		8,356.9409	8,141.0521	16,497.9930	C02e

2 AM	0.00	
Date: 3/25/2016 3:55 AM	0.00	
ite: 3/25/	0.00	
Da	00.0	
	0.00	
	0.00	
	40.07	
of 31	0.00	
Page 6 of 31	54.91	
	41.47	
	0.00	
	49.72	
2.2	0.00	
od.2013.	0.00	
CalEEM	0.00	
Version:	0.00	
neve Deve	O D Section	Commission - Exhibit 1 - Development Review Committee Staff Report ment Review Committee - Exhibit 7 - CEQA Documents

Development Review Committee Staff Report

CO2e		0.0962	3,324.9702	15,832.6981	587.2089	19,744.9734
NZO			0.0606			0.0606
CH4	У́к	2.5000e- 004	0.0633	0.3507	0.1519	0.5662
Total CO2	p/ql	0.0910	3,304.8574	15,825.3325	584.0197	19,714.3005
NBio- CO2		0.0910	:	15,825.3325	584.0197	19,714.3005 19,714.3005
Bio- CO2						
PM2.5 Total		1.5000e- 004	0.2093	3.4722	0.3525	4.0342
Exhaust PM2.5		1.5000e- 004	0.2093	0.4632	0.3525	1.0252
Fugitive PM2.5				3.0090		3.0090
PM10 Total	lb/day	1.5000e- 004	0.2093	11.7195	0.3791	12.3081
Exhaust PM10		1.5000e- 004	0.2093	0.5031	0.3791	1.0917
Fugitive PM10		•••••		11.2164		11.2164
S02		0.0000	0.0165	0.1877	5.9500e- 003	0.2102
8		0.0429	2.3134	52.2474	4.3598	58.9634
×ON		4.0000e- 004	2.7541	29.0779	5.0736	36.9059
ROG		16.1396	0:3030	3.8982	0.5725	20.9133
	- Category	nibi	LEnergy	- De	Offroad -	bwe
	NOx CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 PM2.5 PM2.5 PM2.5 Total PM2.5 PM2.	ROG NOx CO SO2 Fugitive PM10 Exhaust PM2.5 Total To	ROG NOx CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 PM2.5 PM2.5 Total PM2.5 Total PM2.5 Total N2O N2O	ROG NOx CO SOZ Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 PM2.5 PM2.5 Total COZ NBio-COZ Total COZ CH4 NZO NZO	ROG NOX CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 PM2.5 PM2.5 Total PM2.5 PM2.5 Total PM2.5 PM2.5 Total PM2.5 PM2.5 Total PM2.5 PM2.	ROG NOX CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CH4 N

- Development Review Committee Staff Report

	0		
_	CO2e	2.97	
3:55 AN	N20	0.00	
Date: 3/25/2016 3:55 AM	СН4	26.82	
Date: 3/	Total CO2	2.96	
	NBio-CO2	2.96	
	Bio- CO2 NBio-CO2 Total CO2	0.00	
	PM2.5 Total	8.74	
	Exhaust PM2.5	34.39	
Page 9 of 31	Fugitive PM2.5	0.00	
Page	PM10 Total	3.08	
	Exhaust PM10	34.73	
	Fugitive PM10	0.00	
	802	2.83	
013.2.2	00	7.39	
:EMod.20	NOX	13.75	
BalEEMod Version: CalEEMod.2013.2.2 ১১ ১১ ১১	ROG	2.74	
alEEMod Juin	g C	Percent Reduction	nis
Develo	nme		(6)

| Comparison | Com 20 Num Days Num Days Week **End Date** 1/27/2017 Start Date 1/1/2017 Phase Type Demolition Development Site Preparation

Settle Site Prep

Phase Description

:8	•				
Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws 1 8.00 81 0.73	1	8.00	81	0.73
Demolition Excavators 3 8.00 162 0.38	Excavators	Е	8.00	162	0.38
t					

Phase Name	Offroad Equipment Worker Trip V. Count Number	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	endor Trip Hauling Trip Worker Trip Vendor Trip Hauling Trip Worker Vehicle Number Length Class	Vehicle Class Vehicle Class	Hauling Vehicle Class
DAmolition		15.00	00:0		14.70			20.00 LD_Mix		HHDT
		18.00	00.0	00.00	14.70			20.00 LD_Mix		HHDT
Gम्ब्रेसाng	Θ	20.00	00.00	0.00	14.70	06.9		20.00 LD_Mix	HDT_Mix	
Badding Construction	O	286.00	112.00	00.00	14.70	06.9		20.00 LD_Mix	HDT_Mix	HHDT
Peging 6 15.00	9	15.00	00:00	00.0	14.70	96.90		20.00 LD_Mix	HDT_Mix	HHDT

							—	-	1
					CO2e		4,059.7211	4,059.7211	
HHDT					N20				
T_Mix					CH4		1.1073	1.1073	
呈					otal CO2	lb/day		36.4674	
_Mix							36.4674 4,0	36.4674 4,0	
20.00 LE							4,0	4,0	
06							197	797	
9								-	
14.70							1.97	1.97	
0.00							2.1252	2.1252	
0.00					Exhaust PM10	day	2.1252	2.1252	
					Fugitive PM10	/ql			
57.00	uo				802		0.0399	0.0399	
_	ıstructi			<u>site</u>	8		33.8934	33.8934	
	res Con		_	on On-	XON		42.6971	42.6971	
ð	Measu	Area	- 2017	<u>onstructi</u>	ROG		4.0482	4.0482	
ral Coatin	gation	, pesodx	nolitior	ated Cc		ک	pg	H	
Unitectu	Ç.O O∵O	iii mignis	esien	Exhibi	1 1 -	Deve Deve		meni ∰	Review Committee Staff Repo EQA Documents
	.00 0.00 0.00 14.70 6.90 20.00 LD_Mix HDT_Mix	.00 0.00 14.70 6.90 20.00 LD_Mix HDT_Mix	.00 0.00 0.00 HDT_Mix HDT_Mix HDT_Mix	.00 0.00 LD_Mix HDT_Mix	0.00 0.00 HDT_Mix HDT_Mix HDT_Mix	Fugitive	Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Total Total PM2.5 Total Total DM2.5 DM2	Fugitive	HDT_MK

5 AM	CO2e		2,682.6579	0.000.0	171.7859	2,854.4439			CO2e		4,059.7211	4,059.7211	
2016 3:5	N20								N20				
Date: 3/25/2016 3:55 AM	CH4	Я	0.0192	0.0000	8.4400e- 003	0.0276			CH4	ay	1.1073	1.1073	
Dat	Total CO2	lb/day	2,682.2557	0.0000	171.6086	2,853.8643			Total CO2	lb/day	4,036.4674	4,036.4674	
	NBio- CO2		2,682.2557	0.0000	171.6086	2,853.8643			NBio- CO2		4,036.4674 4,036.4674	4,036.4674	
	Bio- CO2								Bio- CO2		0.000.0	0.0000	
	PM2.5 Total		0.3070	0.0000	0.0457	0.3527			PM2.5 Total		1.9797	1.9797	
of 31	Exhaust PM2.5		0.1321	0.0000	1.2400e- 003	0.1334			Exhaust PM2.5		1.9797	1.9797	
Page 12 of 31	Fugitive PM2.5		0.1749	0.0000	0.0445	0.2193			Fugitive PM2.5				
_	PM10 Total		0.7822	0.0000	0.1690	0.9512			PM10 Total		2.1252	2.1252	
	Exhaust PM10	lb/day	0.1436	0.0000	1.3500e- 003	0.1450			Exhaust PM10	lb/day	2.1252	2.1252	
	Fugitive PM10)/ql	0.6386	0.0000	0.1677	0.8062			Fugitive PM10	o/ql			
5.5	802		0.0270	0.0000	2.1200e- 003	0.0292			SO2		0.0399	0.0399	
od.2013.	00		6.8405	0.0000	0.8806	7.7210	희		00		33.8934	33.8934	
CalEEM.	×ON		9.3086	0.0000	0.0705	9.3791	on On-Si		NOX		42.6971	42.6971	
Version:	ROG		0.5973	0.0000	0.0561	0.6534	nstructio		ROG		4.0482	4.0482	
Tale EMod Version: Cale EMod. 2013.2.2 By Columnitigated Construction Off-Site with the Columnity of the Co	issior	- Category	J Hauling	Vendor	Dev		mer ≅ R	evie	w Co	Category MM(Otto	e Sta	ff Report
Development Re	eviev	v Cc	mn	iitte	e - E	xhib	t 7 - ČE(DAC	ocu	mer	ts		1 ' - '
Attachment 3 - City	Plan	ning	Com	nmiss	sion F	Report	t and Exh	ibits -	April	05, 20	018		

5 AM	CO2e		2,682.6579	0.0000	171.7859	2,854.4439			CO2e		0.000.0	4,028.8432	4,028.8432	
2016 3:5	NZO								N20					
Date: 3/25/2016 3:55 AM	CH4	ay e	0.0192	0.0000	8.4400e- 003	0.0276			CH4	Ав		1.2265	1.2265	
Dat	Total CO2	lb/day	2,682.2557	0.0000	171.6086	2,853.8643 2,853.8643			Total CO2	lb/day	0.0000	4,003.0859 4,003.0859	4,003.0859	
	NBio- CO2		2,682.2557	0.0000	171.6086	2,853.8643			NBio- CO2			4,003.0859	4,003.0859	
	Bio- CO2								Bio- CO2					
	PM2.5 Total		0.3070	0.0000	0.0457	0.3527			PM2.5 Total		9.9307	2.5339	12.4646	
of 31	Exhaust PM2.5		0.1321	0.0000	1.2400e- 003	0.1334			Exhaust PM2.5		0.0000	2.5339	2.5339	
Page 13 of 31	Fugitive PM2.5		0.1749	0.0000	0.0445	0.2193			Fugitive PM2.5		9.9307		9.9307	
_	PM10 Total		0.7822	0.0000	0.1690	0.9512			PM10 Total		18.0663	2.7542	20.8205	
	Exhaust PM10	ay	0.1436	0.0000	1.3500e- 003	0.1450			Exhaust PM10	ay	0.0000	2.7542	2.7542	
	Fugitive PM10	lb/day	0.6386	0.0000	0.1677	0.8062			Fugitive PM10	lb/day	18.0663		18.0663	
2	SO2		0.0270	0.0000	2.1200e- 003	0.0292			802			0.0391	0.0391	
od.2013.2	00		6.8405	0.0000	0.8806	7.7210	-Site		8			39.3970	39.3970	
CalEEMc n Off-Si	×ON		9.3086	0.0000	0.0705	9.3791	- 2017 tion On		×ON			51.7535	51.7535	
Version: (ROG		0.5973	0.000.0	0.0561	0.6534	oaration <u>Construc</u>		ROG			4.8382	4.8382	
aleEMod Version: CalEEMod.2013.2.2 ale Bod Solution Off-Site by Westruction Off-Site where we want to the site of the site	issior	- Category	Jipi Hauling	- 1 Vendor	Dev	/elop	Sa Site Preparation - 2017 Outputigated Construction On-Site	Revie	w Co	mm men		e Sta	्हु aff Re∤	port
Attachment 3 City			^or	mice	ion E) Anort	t and Evi	nihits	Λnril					

2 AM	CO2e		0.0000	0.0000	206.1431	206.1431			CO2e		0.000	4,028.8432	4,028.8432	
.016 3.5	N20								N20					
Date: 3/25/2016 3:55 AM	CH4	, ke	0.0000	0.0000	0.0101	0.0101			CH4	ay.		1.2265	1.2265	
Dat	Total CO2	lb/day	0.000.0	0.000.0	205.9304	205.9304			Total CO2	lb/day	0.0000	4,003.0859	4,003.0859 4,003.0859	
	NBio- CO2		0.0000	0.0000	205.9304	205.9304			NBio- CO2			4,003.0859 4,003.0859	4,003.0859	
	Bio- CO2								Bio- CO2			0.0000	0.0000	
	PM2.5 Total		0.0000	0.0000	0.0549	0.0549			PM2.5 Total		3.8730	2.5339	6.4069	
of 31	Exhaust PM2.5		0.0000	0.000.0	1.4900e- 003	1.4900e- 003			Exhaust PM2.5		0.0000	2.5339	2.5339	
Page 14 of 31	Fugitive PM2.5		0.0000	0.0000	0.0534	0.0534			Fugitive PM2.5		3.8730		3.8730	
ш.	PM10 Total		0.0000	0.0000	0.2028	0.2028			PM10 Total		7.0458	2.7542	9.8001	
	Exhaust PM10	ay	0.0000	0.0000	1.6200e- 003	1.6200e- 003			Exhaust PM10	ay	0.000.0	2.7542	2.7542	
	Fugitive PM10	lb/day	0.0000	0.000.0	0.2012	0.2012			Fugitive PM10	lb/day	7.0458		7.0458	
2	802		0.0000	0.0000	2.5500e- 003	2.5500e- 003			S02			0.0391	0.0391	
od.2013.2	00		0.0000	0.0000	1.0567	1.0567	Q.	<u>!</u>	8			39.3970	39.3970	
CalEEMc	NOX		0.0000	0.0000	0.0846	0.0846	n On-Sif		×ON			51.7535	51.7535	
Version:	ROG		0.0000	0.000.0	0.0674	0.0674	Structio		ROG			4.8382	4.8382	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale Construction Off-Site by the Construction Off-Site where the Construction off-Site ale Construction off-Site	issior	- Category	JDi Hauling	L Vendor	De,	velok <u>g</u>	men g	Revie EQA [xhibits -	w Co	TMCategory	打gitive Dust 〇	e Sta	ੂ aff R∈	eport
Development Re		V Co	mn Com	ilite	e - E	xhib Renor	t 7 - Ō	EQA [OCU April	mer	N18		_	1
only	. iaii	9	J 011			.0001	L		۱۱۱۱۲۰۰۰	55,2	5 , 5			

5 AM	CO2e		0.0000	0.0000	206.1431	206.1431			CO2e		0.0000	6,353.9915	6,353.9915	
2016 3:5	NZO								NZO					
Date: 3/25/2016 3:55 AM	CH4	ay	0.0000	0.0000	0.0101	0.0101			CH4	Ук		1.9344	1.9344	
Dat	Total CO2	lb/day	0.000.0	0.000.0	205.9304	205.9304			Total CO2	lb/day	0.0000	6,313.3690	6,313.3690	
	NBio- CO2		0.0000	0.0000	205.9304	205.9304			NBio- CO2			6,313.3690 6,313.3690	6,313.3690 6,313.3690	
	Bio- CO2								Bio-CO2		•••••			
	PM2.5 Total		0.0000	0.0000	0.0549	0.0549			PM2.5 Total		3.5965	3.0518	6.6483	
of 31	Exhaust PM2.5		0.0000	0.000.0	1.4900e- 003	1.4900e- 003			Exhaust PM2.5		0.000.0	3.0518	3.0518	
Page 15 of 31	Fugitive PM2.5		0.0000	0.0000	0.0534	0.0534			Fugitive PM2.5		3.5965		3.5965	
_	PM10 Total		0.0000	0.0000	0.2028	0.2028			PM10 Total		8.6733	3.3172	11.9905	
	Exhaust PM10	day	0.0000	0.0000	1.6200e- 003	1.6200e- 003			Exhaust PM10	lay	0.0000	3.3172	3.3172	
	Fugitive PM10	lb/day	0.0000	0.000.0	0.2012	0.2012			Fugitive PM10	lb/day	8.6733		8.6733	
2	S02		0.0000	0.0000	2.5500e- 003	2.5500e- 003			802			0.0617	0.0617	
od.2013.2	00		0.0000	0.0000	1.0567	1.0567	0 1: 0		9			46.8050	46.8050	
CalEEMc n Off-Si	XON		0.0000	0.0000	0.0846	0.0846			×ON			69.5920	69.5920	
Version: (ROG		0.000.0	0.000.0	0.0674	0.0674	- 2017		ROG			6.0991	6.0991	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale	issior	- Category				velop	7.3.4 Grading	Revie	w C	u Category	And Dust	Ogf-Road	aff Rep	port
Attachment 3 City			omm			xnibi	ι / - C	veuA L	JUCL A pril	nne(010			

6,353.9915

1.9344

6,313.3690 6,313.3690

0.0000

4.4545

3.0518

1.4026

6.6998

3.3172

3.3826

0.0617

46.8050

69.5920

6.0991

tstand part like port like port like port

6,353.9915

1.9344

6,313.3690 6,313.3690

0.0000

3.0518

3.0518

3.3172

3.3172

0.0617

46.8050

69.5920

6.0991

0.000.0

0.0000

1.4026

0.0000

1.4026

3.3826

0.000.0

3.3826

TaleEMod Version: CalEEMod.2013.2.2

Value of the control of the c

2,404.6282

0.0170

0.0000

0.0000

CO2e

N20

CH4

3,275.3848

0.1610

	5,680.0130		CO2e		2,653.4490	2,653.4490	
			N20				
	0.1779		CH4	, ke	0.6497	0.6497	
	5,676.2767		Total CO2	lb/day	2,639.8053	2,639.8053	
	5,676.2767 5,676.2767		NBio- CO2		2,639.8053 2,639.8053	2,639.8053 2,639.8053	
			Bio- CO2		0.0000	0.0000	
	1.2006		PM2.5 Total		1.6730	1.6730	
	0.1534		Exhaust PM2.5		1.6730	1.6730	
	1.0472		Fugitive PM2.5				
	4.0636		PM10 Total		1.7812	1.7812	
	0.1667		Exhaust PM10	ay	1.7812	1.7812	
	3.8970		Fugitive PM10	lb/day			
	0.0648		802		0.0268	0.0268	
	27.2959	Φļ	8		18.1291	18.1291	
	10.2013	n On-Sit	×ON		26.4057	26.4057	
	1.9280	nstructio	ROG		3.1024	3.1024	
ev		Marigated Construction On-Site	ew Co	mm ^{Category}	Off-Road	e Sta	ff Report
- E	xhibi	t 7 - CEQA	Docu	men		, ora	
n Re	eport	and Exhibits	s - April	05, 20	018		

2 AM	CO2e		0.0000	2,364.3086	3,153.3918	5,517.7004		CO2e		2,623.3517	2,623.3517	
2:016 3:5	N20							N2O				
Date: 3/25/2016 3:55 AM	CH4	ay	0.0000	0.0169	0.1494	0.1663		CH4	ay	0.6387	0.6387	
Dat	Total CO2	lb/day	0.0000	2,363.9547	3,150.2545	5,514.2091		Total CO2	lb/day	2,609.9389	2,609.9389	
	NBio- CO2		0.0000	2,363.9547	3,150.2545 3,150.2545	5,514.2091		NBio- CO2		2,609.9389	2,609.9389	
	Bio- CO2		•····					Bio- CO2		0.0000	0.0000	
	PM2.5 Total		0.0000	0.3216	0.8710	1.1926		PM2.5 Total		1.4048	1.4048	
of 31	Exhaust PM2.5		0.0000	0.1222	0.0232	0.1454		Exhaust PM2.5		1.4048	1.4048	
Page 20 of 31	Fugitive PM2.5		0.0000	0.1994	0.8478	1.0472		Fugitive PM2.5				
E.	PM10 Total		0.0000	0.8330	3.2218	4.0549		PM10 Total		1.4943	1.4943	
	Exhaust PM10	lay	0.0000	0.1328	0.0250	0.1579		Exhaust PM10	lay	1.4943	1.4943	
	Fugitive PM10	lb/day	0.0000	0.7002	3.1968	3.8970		Fugitive PM10	lb/day			
2	802		0.0000	0.0243	0.0405	0.0648		SO2		0.0268	0.0268	
od.2013.2	8		0.0000	10.0102	15.2546	25.2648	<u>.</u> 9	8		17.5327	17.5327	
CalEEMc	×ON		0.0000	8.1330	1.2199	9.3529	n On-Sit	×ON		23.2608	23.2608	
Version:	ROG		0.0000	0.8045	0.9650	1.7694	<u>ıstructio</u>	ROG		2.6687	2.6687	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale Construction Off-Site by the Construction off-Site where the Construction off-Site ale Construction off-Site ale Construction off-Site	issior	- Category	Jibi Jibi	t 1 -	De'	volok Total	menstruction On-Site	ew Co	mmc mer	itte	e Sta	ff Report
Attachment 3 - City		nina (Com	miss	ion F	Renort	t and Exhibits	- Anril	05 2	018		

5 AM	CO2e		2,364.3086	3,153.3918	0.000.0	5,517.7004			CO2e		2,259.9481	0.000.0	2,259.9481	
2016 3:5	N20								N2O					
Date: 3/25/2016 3:55 AM	CH4	ay	0.0169	0.1494	0.0000	0.1663			CH4	ay	0.6990		0.6990	
Dat	Total CO2	lb/day	2,363.9547	3,150.2545	0.0000	5,514.2091			Total CO2	lb/day	2,245.2695	0.0000	2,245.2695	
	NBio- CO2		2,363.9547	3,150.2545 3,150.2545	0.0000	5,514.2091 5,514.2091			NBio- CO2		2,245.2695 2,245.2695		2,245.2695	
	Bio- CO2								Bio- CO2					
	PM2.5 Total		0.3216	0.8710	0.0000	1.1926			PM2.5 Total		0.8635	0.0000	0.8635	
of 31	Exhaust PM2.5		0.1222	0.0232	0.0000	0.1454			Exhaust PM2.5		0.8635	0.0000	0.8635	
Page 21 of 31	Fugitive PM2.5		0.1994	0.8478	0.0000	1.0472			Fugitive PM2.5					
_	PM10 Total		0.8330	3.2218	0.000.0	4.0549			PM10 Total		0.9386	0.0000	0.9386	
	Exhaust PM10	lb/day	0.1328	0.0250	0.0000	0.1579			Exhaust PM10	lb/day	0.9386	0.0000	0.9386	
	Fugitive PM10)/qI	0.7002	3.1968	0.0000	3.8970			Fugitive PM10)/qI				
2	802		0.0243	0.0405	0.0000	0.0648			802		0.0223		0.0223	
od.2013.2	00		10.0102	15.2546	0.0000	25.2648	ä	-Vite	00		14.4944		14.4944	
CalEEMc	×ON		8.1330	1.2199	0.0000	9.3529	;	Tion City	XON		17.1628		17.1628	
Version:	ROG		0.8045	0.9650	0.0000	1.7694	2018	Construc	ROG		1.6114	0.8161	2.4275	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale Construction Off-Site by the Construction Off-Site where the Construction off-Site ale Construction off-Site ale Construction off-Site	issior eviev	x - Category	idir mm	i	e - E	velop	- 3⊕ Meganing - 7	Solution Christians Construction Christian Chr	w Co	mer mer		e St	est aff Re	eport
Attachment 3 - City														

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

CO2e

N20

CH4

lb/day

165.3877	165.3877		CO2e		2,259.9481	0.0000	2,259.9481	
			N2O					
7.8400e- 003	7.8400e- 003		CH4	ЭЭ	0669.0		0.6990	
165.2231	165.2231		Total CO2	lb/day	2,245.2695	0.0000	2,245.2695	
165.2231	165.2231		NBio- CO2		2,245.2695 2,245.2695		2,245.2695 2,245.2695	
			Bio- CO2		0.0000		0.0000	
0.0457	0.0457		PM2.5 Total		0.8635	0.0000	0.8635	
1.2100e- 003	1.2100e- 003		Exhaust PM2.5			0.0000	0.8635	
0.0445	0.0445		Fugitive PM2.5					
0.1690	0.1690		PM10 Total		0.9386	0.000.0	0.9386	
1.3100e- 003	1.3100e- 003		Exhaust PM10	ay	0.9386	0.000.0	0.9386	
0.1677	0.1677		Fugitive PM10	lb/day				
2.1200e- 003	2.1200e- 003		SO2		0.0223	-	0.0223	
0.8001	0.8001	ΦĮ	00		14.4944	1	14.4944	
0.0640	0.0640	n On-Sit	NOx		17.1628		17.1628	
0.0506	0.0506	<u>ıstructio</u>	ROG		1.6114	0.8161	2.4275	
JWorker)	Total	Minimitiated Construction On-Site	N C (Category MC	Off-Road	e Sta	ੂ aff R∈	eport

628.4732

0.0000

0.0000

CO2e

628.4732

Σ
⋖
3:55
9
/201
3/25
ate:
ŏ

S AM	CO2e		0.000	0.0000	628.4732	628.4732	•		CO2e				
Date: 3/25/2016 3:55 AM	N2O								NZO				
te: 3/25//	CH4	lay	0.0000	0.0000	0.0298	0.0298			CH4	>			
Dai	Total CO2	lb/day	0.0000	0.0000	627.8479	627.8479			Total CO2	lb/day			
	NBio- CO2		0.000	0.0000	627.8479	627.8479			NBio- CO2				
	Bio- CO2								Bio- CO2 NE				
	PM2.5 Total		0.0000	0.0000	0.1736	0.1736			PM2.5 B Total				
of 31	Exhaust PM2.5		0.0000	0.0000	4.6200e- 003	4.6200e- 003			Exhaust PM2.5				
Page 25 of 31	Fugitive PM2.5		0.0000	0.0000	0.1690	0.1690			Fugitive E				
ш	PM10 Total		0.0000	0.0000	0.6421	0.6421			PM10 Total				
	Exhaust PM10	lb/day	0.0000	0.0000	4.9900e- 003	4.9900e- 003			Exhaust PM10	λí			
	Fugitive PM10)/qı	0.0000	0.0000	0.6371	0.6371			Fugitive PM10	lb/day			
5.5	S02	ı	0.0000	0.0000	8.0700e- 003	8.0700e- 003			SO2				
od.2013.;	00	ı	0.0000	0.0000	3.0403	3.0403	Nobile	obile	00				
CalEEMe	NOX					0.0000	0.0000	0.2431	0.2431	etail - N	ures Mc	×ON	
Version: nstructio	ROG		0.0000	0.0000	0.1923	0.1923	onal De	on Meas	ROG				
Minimated Construction Off-Site	ssior	- Category	Jipi Hauling	- Vendor	Dev	√O O\ Total	⊞ H ⊉ Operati	Measures Mobile Westigation Measures Mobile Westigation Measures Mobile Results - April 0!	mitte	(Category			
Development Re Attachment 3 - City F	eviev Plann	V Co ing C	mm omi	iitte missi	e - E on R	xhibi leport	t 7 - C t and E	'EOA Docume Exhibits - April 0!	ents 5, 201	8			

0000	628.4732	628.4732			CO2e		15,832.6981	15,832.6981
					N20			
00000	0.0298	0.0298			CH4	>	0.3507	0.3507
	627.8479	627.8479			Total CO2	lb/day	15,825.3325	15,825.3325
0000	627.8479	627.8479			NBio- CO2		15,825.3325 15,825.3325	15,825.3325 15,825.3325
			ı		Bio- CO2			
	0.1736	0.1736			PM2.5 Total		3.4722	3.4722
	4.6200e- 003	4.6200e- 003			Exhaust PM2.5		0.4632	0.4632
0000	0.1690	0.1690			Fugitive PM2.5		3.0090	3.0090
	0.6421	0.6421			PM10 Total		11.7195	11.7195
	4.9900e- 003	4.9900e- 003			Exhaust PM10	ay	0.5031	0.5031
0000	0.6371	0.6371			Fugitive PM10	lb/day	11.2164	11.2164
00000	8.0700e- 003	8.0700e- 003			S02		0.1877	0.1877
	3.0403	3.0403	Aobile	obile	00		52.2474	52.2474
	0.2431	0.2431	tail - N	ures Mc	XON		29.0779	29.0779
0000	0.1923	0.1923	onal De	on Meas	ROG		3.8982	3.8982
	Oworker ADC		ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك ك	Mitigation Measures Mobile Weasures Mobile Weasures Mobile Weasures Mobile Weasures Mobile April 05 April 05	mitt∈	Scategory St.	Mitigated	

Other Notation Land Uses Weekday Saturday Sunday Sunday Sunday Annual VMT Annual VMT Annual VMT Saturday Manufacturing 1,176.56 458.92 190.96 4,132.646 4,132.646 4,132.646 About Not Asphalt Surfaces 0.00 0.00 0.00 0.00 0.00 4,132.646 4,132.646 About Not Asphalt Surfaces 1,176.56 458.92 190.96 4,132.646 4,132.646 About Not Asphalt Surfaces 1,176.56 458.92 190.96 4,132.646 4,132.646 About Not Asphalt Surfaces 16.60 840 6.90 59.00 13.00 92 5 3 About Not Asphalt Surfaces 16.60 840 6.90 59.00 28.00 13.00 9 0 0 0 About Not Asphalt Surfaces 16.60 840 6.90 6.90 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th></th> <th></th> <th></th> <th>Average D</th> <th>Average Daily Inp Kate</th> <th></th> <th>Un</th> <th>Unmitigated</th> <th>_</th> <th>Mitigated</th> <th></th>				Average D	Average Daily Inp Kate		Un	Unmitigated	_	Mitigated	
es 0.00 0.00 0.00 0.00 0.00 1.176.56 458.92 190.96 4,132,646 es 0.00 0.00 0.00 0.00 0.00 I,176.56 458.92 190.96 4,132,646 I,176.56 1,176.56 458.92 190.96 4,132,646 I6.60 8.40 6.90 59.00 28.00 13.00 0.00 I6.60 8.40 6.90 0.00 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0	O Land Use		Week			ınday	Ann	nual VMT		Annual VM	⊢
es 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	∑ Manufacturin	бı			58.92	190.96	4,1	132,646	ļ	4,132,646	
Nor C-W H-S or C-C H-W or C-W H-D or C-NW H-D or C-NW <t< td=""><td>Other Non-Asphalt &</td><td>Surfaces</td><td></td><td></td><td>0.00</td><td>00.00</td><td></td><td></td><td></td><td></td><td></td></t<>	Other Non-Asphalt &	Surfaces			0.00	00.00					
Nor C-W H-S or C-C H-S or C-W H-D or C-NW H-D or C-NW <t< td=""><td></td><td>t</td><td>0.0</td><td></td><td>00:00</td><td>00.00</td><td></td><td></td><td></td><td></td><td></td></t<>		t	0.0		00:00	00.00					
Nor C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW Primary Diverted 16.60 8.40 6.90 59.00 28.00 13.00 92 5 16.60 8.40 6.90 0.00 0.00 0 0 0 16.60 8.40 6.90 0.00 0.00 0 0 0 16.60 8.40 6.90 0.00 0.00 0 0 0 16.60 8.40 6.90 0.00 0.00 0 0 0 16.60 B.40 6.90 0.00 0.00 0 0 0	(U Total		1,176		58.92	190.96	4,1	132,646		4,132,646	
H-W or C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW Primary Diverted	Con		Miles			Trip %			Trip Pur	% esod	
urfaces 16.60 8.40 6.90 59.00 28.00 13.00 92 5 urfaces 16.60 8.40 6.90 0.00 0.00 0		H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C		Primary	Diverted	L	ss-by
urfaces 16.60 8.40 6.90 0.00 0.00 0.00 0 0 0 LDT2 MDV LHD1 LHD2 MHD HHD OBUS UBUS MCY SBU	Manufacturing	16.60	8.40	06:9	29.00	28.00	13.00	92	2		8
16.60 8.40 6.90 0.00 0.00 0 0 0 0 0 0 1 1 1 1 1 1 1 1	Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0		0
DA LDT1 LDT2 MDV LHD1 LHD2 MHD HHD OBUS UBUS MCY SBUS	Parking Lot	16.60	8.40	06.9	00.00	0.00	00:00	0	0		0
LDT1 LDT2 MDV LHD1 LHD2 MHD OBUS UBUS MCY SBUS	iff Re										
	LDT1	H	_	H	MHD	H	OBUS	NBUS	MCY	SBUS	MH

BalEEMod Version: CalEEMod.2013.2.2 호	Version: (CalEEMoo	d.2013.2.	2			ď	Page 27 of 31	of 31				Date	3/25/2	Date: 3/25/2016 3:55 AM	W S
UHU.744000	0.00000.0	0.000000	0.00000		0.084000	0.00000.0	0.046000	0.126000		0.00000.0	0.00000.0	0.000000	0.000000	00	0.000000	
S Energy Detail	Detail															
Fleet Mix	×															
U 協torical Ene !S	ergy Use:	z														
○ ☐ Mitigation Measures Energy	วท Meası	ures Ene	ergy.													
- Exhil																
oit 1																
- De	ROG	×ON	8	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Fotal CO2	CH4	NZO	CO2e
Acategory O					lb/day	ay							lb/day	>		
AaturalGas Mitigated	0:3030	2.7541	2.3134	0.0165		0.2093	0.2093		0.2093	0.2093		3,304.8574 3,304.8574	,304.8574	0.0633	9090.0	3,324.9702
AlaturalGas Inmitigated	0.3030	2.7541	2.3134	0.0165		0.2093	0.2093		0.2093	0.2093	4	3,304.8574 3,304.8574	i	0.0633	0.0606	3,324.9702
Rev																

Panning Committee - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Date: 3/25/2016 3:55 AM	
Page 28 of 31	
IEEMod.2013.2.2	

	CO2e		က်	0.0000	0.0000	6 3,324.9702			CO2e		6 3,324.9702	0.0000	0.0000	2 224 0702
	NZO		0.0606	0.0000	0.0000	0.0606			NZO		0.0606	0.0000	0.0000	
	CH4	lb/day	0.0633	0.0000	0.0000	0.0633			CH4	lb/day	0.0633	0.0000	0.0000	
	Total CO2)/qI	3,304.8574	0.0000	0.000.0	3,304.8574			Total CO2)/qI	3,304.8574	0.0000	0.0000	
	NBio- CO2		3,304.8574 3,304.8574	0.0000	0.0000	3,304.8574			NBio- CO2		3,304.8574 3,304.8574	0.0000	0.0000	
	Bio-CO2								Bio-CO2					
	PM2.5 Total		0.2093	0.000.0	0.000.0	0.2093			PM2.5 Total		0.2093	0.0000	0.000.0	•
	Exhaust PM2.5		0.2093	0.0000	0.0000	0.2093			Exhaust PM2.5		0.2093	0.0000	0.0000	
	Fugitive PM2.5		************						Fugitive PM2.5		•			
	PM10 Total		0.2093	0.000.0	0.000.0	0.2093			PM10 Total		0.2093	0.000.0	0.000.0	
	Exhaust PM10	ay	0.2093	0.000.0	0.000.0	0.2093			Exhaust PM10	Ag.	0.2093	0.000.0	0.000.0	
	Fugitive PM10	lb/day	•						Fugitive PM10	lb/day				
	S02		0.0165	0.0000	0.0000	0.0165			S02		0.0165	0.0000	0.0000	
as	00		2.3134	0.0000	0.0000	2.3134			00		2.3134	0.000.0	0.0000	
aturalG	×ON		2.7541	0.000.0	0.000.0	2.7541			XON		2.7541	0.000.0	0.000.0	
Use - N	ROG		0.3030	0.0000	0.0000	0.3030			ROG		0.3030	0.0000	0.0000	ĺ
y Land	VaturalGas Use	kBTU/yr	28091.3	0	0				NaturalGas Use	kBTU/yr	28.0913	0	0	
Energy by Land Use - NaturalGas Um <u>umitigated</u> By Sumulated Stand Use - NaturalGas Sumulated Su	ssion	- Land Use	ufacturing	Other Non- ohalt Surfaces	Parking Lot	D Total	TO THE	Revie				Other Non- Aalt Surfaces	A Jarking Lot	

Date: 3/25/2016 3:55 AM

Page 29 of 31

ভূalEEMod Version: CalEEMod.2013.2.2 এ

0.0962 0.0962 0.0000 0.0962 0.0962 0.0000 CO2e CO2e N20 NZO 2.5000e-004 2.5000e-004 2.5000e-004 2.5000e-004 CH4 CH4 lb/day lb/day Total CO2 Total CO2 0.0910 0.0910 0.0910 0.0910 0.0000 0.0000 NBio- CO2 NBio-CO2 0.0910 0.0910 0.0910 0.0910 Bio-CO2 Bio-CO2 1.5000e-004 1.5000e-004 1.5000e-004 1.5000e-004 PM2.5 Total PM2.5 Total 0.0000 0.0000 1.5000e-004 1.5000e-004 Exhaust PM2.5 Exhaust PM2.5 1.5000e-004 1.5000e-004 0.0000 0.0000 Fugitive PM2.5 Fugitive PM2.5 1.5000e-004 1.5000e-004 1.5000e-004 1.5000e-004 0.0000 0.0000 PM10 Total PM10 Total 1.5000e-004 1.5000e-004 1.5000e-004 Exhaust PM10 Exhaust PM10 1.5000e-004 0.0000 0.0000 Fugitive PM10 Fugitive PM10 0.0000 0.0000 0.0000 0.0000 **SO2 SO2** 0.0429 0.0429 0.0429 0.0429 Development Review Version: CalEEMod Version: Ca 8 00 4.0000e-004 4.0000e-004 4.0600e-003 16.1396 13.4832 Consumer Con Total Report

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Date: 3/25/2016 3:55 AM	
Page 30 of 31	
Aod.2013.2.2	

	CO2e		0.0000	0.0000	0.0962	0.0962								Г	_
	N20												Fuel Type		
	CH4	ay			2.5000e- 004	2.5000e- 004							F		loseid 17 0
	Total CO2	lb/day	0.000.0	0.000.0	0.0910	0.0910							Load Factor	0.0	7.0
	NBio- CO2				0.0910	0.0910							Loi	68	
	Bio- CO2		***************************************										Horse Power		
	PM2.5 Total		0.0000	0.000.0	1.5000e- 004	1.5000e- 004							Hors	L	
	Exhaust PM2.5		0.000	0.0000	1.5000e- 004	1.5000e- 004							ear	260	1.0
	Fugitive PM2.5												Days/Year		
	PM10 Total		0.0000	0.0000	1.5000e- 004	1.5000e- 004								.	1 67
	Exhaust PM10	>	0.0000	į	1.5000e- 004	1.5000e- 004							Hours/Day		
	Fugitive PM10	lb/day	•										Ι	က	
	SO2				0.0000	0.0000							Number		
	8		•		0.0429	0.0429		er		ste			ΩN	<u> </u>	
	×ON				4.0000e- 004	4.0000e- 004		res Wat		res Was	road				
	ROG		2.6523	13.4832	4.0600e- 003	16.1396	tail	Measu	etail	Measu	nal Off		Equipment Type		
ning Spated Joment Re		SubCategory 	tectural ating	Consumer Products	scaping	otal	/ater De	itigation	/aste De	itigation	ents Strong Strong Strong		Equip		for Safe
ning E lomm elopment Re			Coating	† J -	Ďе	relop	× 17 2 0 1,4	nt-R∈	evie %	∑	o nmit e	ee	Sta	Fortsifts	Generator Sets

	CO2e		456.9774	130.2315	587.2089	
	N20					
	CH4	lay	0.1436	8.2400e- 003	0.1519	
of 31	Total CO2	lb/day	453.9612	130.0585	584.0197	
Page 31 of 31	NBio- CO2		453.9612 453.9612	130.0585	584.0197	
<u>a.</u>	Bio- CO2					
	PM2.5 Total		0.3054	0.0471	0.3525	
	Exhaust PM2.5		0.3054	0.0471	0.3525	
	Fugitive PM2.5					
	PM10 Total		0.3320	0.0471	0.3791	
5.5	Exhaust PM10	ay	0.3320 0.3320	0.0471	0.3791	
2013.	Fugitive PM10	lb/day				
ЕЕМОО	802		4.5800e- 003	1.3700e- 003	5.9500e- 003	
ı: Call	8		3.5826	0.7772	4.3598	
ersior Itigat	×ON		4.2849	0.7886	5.0736	ion
Mod V	ROG		0.4799 4.2849 3.5826 4.5800e	0.0927	0.5725	ggetal
The state of the s	miss	Edpment - Uppe	TEX Stillfs	Tredition in	1º- D	evelopment Review Committee Staff Report
Development	Rev ty Pla	iew Innin	Cor	nmi	itee -	Exhibit 7 - CEQA Documents Report and Exhibits - April 05, 2018

anning Commission - Exhibit 1 - Development Review Committee Staff R evelopment Review Committee - Exhibit 7 - CEQA Documents	?eport

Date: 3/25/2016 3:58 AM Floor Surface Area 101,590.00 271,378.80 308,000.00 Lot Acreage 2.33 6.23 **Center Street Warehouse** South Coast Air Basin, Winter 1000sqft 1000sqft Metric Acre Page 1 of 30 101.59 308.00 Size 6.23 TallEEMod Version: CalEEMod.2013.2.2

TallEEMod Version: CalEEMod.2013.2.2

TallEEMod Version: CalEEMod.2013.2.2

TallEEMod Version: CalEEMod.2013.2.2

TallEEMod Version: CalEEMod.2013.2.2 Other Non-Asphalt Surfaces Manufacturing Parking Lot Land Uses

Population

0 0

> 2019 31 900.0 Precipitation Freq (Days) Operational Year N2O Intensity (Ib/MWhr) 0.029 2.2 Wind Speed (m/s) CH4 Intensity (Ib/MWhr)

> > Riverside Public Utilities

CONTROL OF STATE OF S

Applitectural Coating - Use of Low-VOC Paints

रब्दी hicle Emission Factors - Fleet Mix Per Traffic Study Vernicle Trips -

Achicle Emission Factors - Fleet Mix Per Traffic Study

Achicle Emission Factors - Fleet Mix Per SCAQMD Recommendation

Exhibit

•			
	Iude Landscape Water Demand using State Water Budget Worksheet	ite Water Budget Worksheet	
511101	y Recycling Requirement ment Mitigation - Water 3 times daily		
コープのDerational Off-Road Equipment - A コープのDerations Operatiosn Based on SC カルジ	nent - Assume Forklifts and Generator Set Equipment per ERG/ARB 2005 Survey ed on SCE Outage Data	et Equipment per ERG/ARB 2005	5 Survey
	Column Name	Default Value	New Value
	EF_Nonresidential_Exterior	250.00	37.00
OX tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	37.00
nm	ent OperDaysPerYear	260.00	12.00
ITTE	ent OperFuelType	Diesel	CNG
· -	ent OperHoursPerDay	8.00	1.67
LX	ent OperOffRoadEquipmentNumber	0.00	3.00
IIIO	ent OperOffRoadEquipmentNumber	0.00	1.00
IL /	OperationalYear	2014	2019
- (SolidWaste	381.92	190.96
		0.03	0.13
2 <i>F</i> A	ОНН	0.03	0.13
DC		0.51	0.74
<i>i</i> Cu		0.51	0.74
tbl\enicleEF		0.51	0.74
פוונ:		90.0	0.00
5		90.0	0.00
tbl/ehicleEF		90.0	0.00
attl tblVehicleEF	LDT2	0.18	0.00
R tbl∨ehicleEF	LDT2	0.18	0.00
.tbl∨ehicleEF	LDT2	0.18	00:00

0.04	0.04 0.08	0.04 0.09	6.6660e-003	6.6660e-003 0.00	6.6660e-003 0.00	4.3770e-003 0.00	4.3770e-003 0.00	003				2.1280e-003 0.00	2.1280e-003 0.00			0.02	.9400e-003 0.00	.9400e-003		5.8200e-004 0.00	5.8200e-004 0.00	2.4960e-003 0.00	2.4960e-003 0.00	2.4960e-003 0.00
LHD1 0.04	LHD1		-	LHD2 6.66	LHD2 6.66			-									OBUS 1.94			SBUS 5.87		UBUS 2.4¢	UBUS 2.4¢	UBUS 2.4¢
annir tbl/ehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF	tblVehicleEF

58 AM										C02e		8,133.0787	7,924.6743	16,057.7530	
2016 3:5										NZO		0.0000	0.000.0	0.0000	
Date: 3/25/2016 3:58 AM										CH4	>-	1.9457	0.8055	2.7512	
Da	97.79	97.79	2,591,811.00	0.00	0.00	0.00				Total CO2	lb/day	8,092.2198	7,907.7589	15,999.9787 15,999.9787	
	0,	O)	2,59							NBio- CO2			7,907.7589	15,999.9787	
										Bio- CO2		0.0000	0.0000	0.0000	
	87.46									PM2.5 Total		12.5194	2.5985	15.1179	
		87.46	00.00	10.33	10.33	10.33				Exhaust PM2.5		3.0535	1.5513	4.6048	
Page 4 of 30										Fugitive PM2.5		9.9840	1.0472	11.0313	
										PM10 Total		21.0233	5.5504	26.5737	
	Percent	ıt	eRate	cent	cent	cent		ion)		Exhaust PM10	lay	3.3190	1.6534	4.9724	
	AerobicPercent	AerobicPercent	OutdoorWaterUseRate	SepticTankPercent	SepticTankPercent	SepticTankPercent		/ Emission)		Fugitive PM10	lb/day	18.2675	3.8970	22.1645	
2.2	Ae	Ae	Outdo	Sept	Sept	Sept		ım Dail)		S02		0.0889	0.0889	0.1778	
lod.2013								Maximu		00		47.8835	43.7048	91.5883	
CalEEM							ımmar)	ction (I	ction	XON		69.6953	32.9295	102.6248	
J BalEEMod Version: CalEEMod.2013.2.2	tblWater	tblWater	tblWater	tblWater	tblWater	tblWater	' ∃ 2∯ Emissions Summary	다. 2.ŤOverall Construction (Maximum Daily E	Umitigated Construction	ROG		6.1755	72.1332	78.3087	
IEEMod							Emissi)verall (itigated		/ear	.017	018	otal	
Pan	nin	g (or	nm	issi	on	- Ex P i	bit 1	- Evelo	ome	nt R	evie	w C	omr	nittee Staff Report

Development Review Committee - Exhibit 7 - CEQA Documents
Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

	CO2e	0.00	
	N20	0.00	
	CH4	0.00	
	Total CO2	0.00	
	Bio- CO2 NBio-CO2 Total CO2	0.00	
	Bio- CO2	0.00	
	PM2.5 Total	40.07	
	Exhaust PM2.5	00:0	
	Fugitive PM2.5	54.91	
	PM10 Total	41.47	
	Exhaust PM10	0.00	
	Fugitive PM10	49.72	
	802	0.00	
	00	0.00	
	NOX	0.00	
	ROG	0.00	
it	aff R	() Percent Oreduction	rt

Committee - Exhibit 7 - CEQA Documents

Commission - Exhibit 1 - Development Review Committee Staff Report

N2O CO2e		0.0962	0.0606 3,324.9702	15,417.7594	587.2089	
CH4	^	2.5000e- 004	0.0633	0.3529	0.1519	0 5504
Total CO2	lb/day	0.0910	3,304.8574	15,410.3488	584.0197	19,299.3168
NBio- CO2		0.0910	3,304.8574	15,410.3488 15,410.3488	584.0197	19,299.3168 19,299.3168
Bio- CO2						
PM2.5 Total		1.5000e- 004	0.2093	3.4757	0.3525	4.0377
Exhaust PM2.5		1.5000e- 004	0.2093	0.4654	0.3525	1.0274
Fugitive PM2.5				3.0104		3.0104
PM10 Total		1.5000e- 004	0.2093	11.7254	0.3791	12.3139
Exhaust PM10	lay	1.5000e- 004	0.2093	0.5055	0.3791	1.0940
Fugitive PM10	lb/day			11.2199		11.2199
802		0.000	0.0165	0.1820	5.9500e- 003	0.2045
8		0.0429	2.3134	55.1822	4.3598	61.8982
×ON		4.0000e- 004	2.7541	30.2464	5.0736	38.0744
Mwrigated Operational Ros Nox Social Science Sci		16.1396	0:3030	4.0536	0.5725	21.0686
ommissior	. Category	nibi	Energy	- De		Total

- Development Review Committee Staff Report

	CO2e	3.04	
Date: 3/25/2016 3:58 AM	N20	0.00	
25/2016	CH4	26.72	
Date: 3/	Total CO2	3.03	
	Bio- CO2 NBio-CO2 Total CO2	3.03	
	Bio- CO2	0.00	
	PM2.5 Total	8.73	
	Exhaust PM2.5	34.31	
Page 8 of 30	Fugitive PM2.5	0.00	
Page	PM10 Total	3.08	
	Exhaust PM10	34.65	
	Fugitive PM10	0.00	
	S02	2.91	
13.2.2	00	7.04	
EMod.20	NOx	13.33	≔
BalEEMod Version: CalEEMod.2013.2.2 집 그 급.	ROG	2.72	Selection Detail
RalEEMod , uiu	g C	Percent Reduction	Constru
Develo	pme	ent F	Review Plannin

○ __ ○ Construction Phase → ∪

lgigase 1 ∰igi 1 mitt	Phase Name	PhaseType	Start Date	End Date	Num Days Week	Num Days	Phase Description
ee - [1/1/2017	1/27/2017	2	20	
)ev - E	Site Preparation	Site Preparation	1/28/2017	2/10/2017	5	10	10
	Grading	Grading		3/24/2017	5	30	
)pr bit	Building Construction	Building Construction		5/18/2018	5	300	300
neı 7 -	Paving			6/15/2018	5	20	
nţ F CE	Architectural Coating	Architectural Coating	6/16/2018	7/13/2018	5	20	
R∈							

Se Name Offroad Equipment Type Amount Usage Hours Horse Power 81 Concrete/Industrial Saws 1 8.00 81 Excavators 3 8.00 162	:6	I					
Demolition Concrete/Industrial Saws 1 8.00 81 Demolition Excavators 3 8.00 162	Phase Nam	э	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load
Demolition Excavators 3 8.00 162	Demolition		Concrete/Industrial Saws	1	8.00	81	
	De Jolition		Excavators	e	8.00	162	

0.38 0.73

d Factor

O BalEEMod Version: CalEEMod.2013.2.2 ○ ☑ ◇ ∪	n: CalEEMod.20	113.2.2			Page 9 of 30	00			Date: 3/25/2016 3:58	16 3:58
Del Delition	Rub	Rubber Tired Dozers			2	8.00		255	0.40	
She Preparation	Rub	Rubber Tired Dozers			е	8.00		255	0.40	
Site Preparation	Trac	Fractors/Loaders/Backhoes	ckhoes		4	8.00		97	0.37	
Grading Jading	Excava	Excavators			2	8.00		162	0.38	
G ra ding	Grac	Graders				8.00		174	0.41	
ew ew	Rub	Rubber Tired Dozers			_	8.00		255	0.40	
Gråding TT	Scraper	Scrapers			2	8.00		361	0.48	
xeni On	Trac	/Load	lers/Backhoes		2	8.00		97	0.37	
Buding Construction	Cranes	Sranes			_	7.00		226	0.29	
Building Construction	工 不 之	Forklifts			က	8.00		89	0.20	
Bullding Construction	Gen	Generator Sets			_	8.00		84	0.74	
Box Construction	Trac	Fractors/Loaders/Backhoes	ckhoes		က	7.00		97	0.37	
Bedding Construction	Wel	Welders			7	8.00		46	0.45	
P il (Pavers	ers			2	8.00		125	0.42	
Paring Taling	Pavi	Paving Equipment			2	8.00		130	0.36	
Paging O	Rollers	ers			2	8.00		80	0.38	
Arshitectural Coating	Air (Air Compressors			_	00'9		78	0.48	
									1	
nmitt ments	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauli
Demolition	9	15.00	00.00	733.00	14.70	6.90	20.00	20.00 LD_Mix	HDT_Mix	표
SK4 Preparation	7	18.00	00.0	00.0	14.70	06.9	20.00	20.00 LD_Mix	HDT_Mix	HEDT
Grading	∞	20.00	00.0	00.0	14.70	06.90	20.00	20.00 LD_Mix	HDT_Mix	HEDT
Baiding Construction	6	286.00	112.00	00.0	14.70	06.90	20.00	20.00 LD_Mix	HDT_Mix	HEDT
Peding	9	15.00	00.0	00.0	14.70	06.90	20.00	20.00 LD_Mix	HDT_Mix	HEDT

								-	[-	
AM						CO2e		4,059.7211	4,059.7211	
Date: 3/25/2016 3:58 AM	ННОТ					N2O			,	
e: 3/25/2	HDT_Mix					CH4	ay	1.1073	1.1073	
Dat	Ι					Total CO2	lb/day	4,036.4674	4,036.4674	
	20.00 LD_Mix					NBio- CO2		4,036.4674 4,036.4674	4,036.4674 4,036.4674	
	20.00					Bio- CO2			,	
	6.90					PM2.5 Total		1.9797	1.9797	
of 30	70					Exhaust PM2.5		1.9797	1.9797	
Page 10 of 30	14.70					Fugitive PM2.5				
ш	00:00					PM10 Total		2.1252	2.1252	
	0.00					Exhaust PM10	ay	2.1252	2.1252	
						Fugitive PM10	lb/day			
5.2	57.00	ion				802		0.0399	0.0399	
od.2013.2	1	nstruct		į	oire	00		33.8934	33.8934	
CalEEMo		ures Co		2	Tion Ch	XON		42.6971	42.6971	Review Committee Staff Repo EQA Documents
Version: (ting	n Meas	d Area	on - 201	construc	ROG		4.0482	4.0482	
IEEMod '	ectural Coa	litigatio	r Expose	emolitic	tigated		legory	-Road	otal	
Par Dev	nnign 'eloi	g Go ome	manis nt Re	si on view	Exhibi Comm	1 - I	Dev∈ e - Ex	đ ldin	men: 7 - (Review Committee Staff Repo

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

8 AM	CO2e		2,676.2883	0.0000	161.1042	2,837.3925				CO2e		0.0000	4,028.8432	4,028.8432	!
2016 3:5	N20									NZO					
Date: 3/25/2016 3:58 AM	CH4	ay	0.0194	0.000.0	8.4400e- 003	0.0279				CH4	ay		1.2265	1.2265	
Dat	Total CO2	lb/day	2,675.8805	0.000.0	160.9269	2,836.8074				Total CO2	lb/day	0.0000	4,003.0859	4,003.0859	
	NBio- CO2		2,675.8805	0.000.0	160.9269	2,836.8074				NBio- CO2			4,003.0859 4,003.0859	4,003.0859 4,003.0859	
	Bio- CO2						1 -	Bio- CO2							
	PM2.5 Total		0.3073	0.0000	0.0457	0.3530	l 1	PM2.5 Total		9.9307	2.5339	12.4646			
of 30	Exhaust PM2.5	ay 0.1439 0.7825 0.1749 0.1324 0.0000 0.0000 0.0000	0.0000	1.2400e- 003	0.1336				Exhaust PM2.5		0.0000	2.5339	2.5339		
Page 12 of 30	Fugitive PM2.5		0.0000 0.0000	0.0000	0.0445	0.2193				Fugitive PM2.5		9.9307		9.9307	
_	PM10 Total			0.0000	0.1690	0.9515		PM10 Total		18.0663	2.7542	20.8205			
	Exhaust PM10			0.1439	0.0000	1.3500e- 003	0.1453		Exhaust PM10	lb/day	0.0000	2.7542	2.7542		
	Fugitive PM10	lb/day	0.6386	0.0000	0.1677	0.8062	1	Fugitive PM10	p/qI	18.0663		18.0663			
2	SO2		0.0270	0.0000	1.9900e- 003	0.0290				s02			0.0391	0.0391	
od.2013.2	00		7.8877	0.0000	0.8088	8.6965		Site		00			39.3970	39.3970	1
CalEEMo n Off-Sit	×ON		9.6450	0.0000	0.0775	9.7224	- 2017	tion On-		XON			51.7535	51.7535	
/ersion: (ROG		0.6283	0.000.0	0.0573	0.6856	aration	Construc		ROG			4.8382	4.8382	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale Construction Off-Site by the Construction off-Site where the Construction off-Site ale Construction off-Site ale Construction off-Site	issior	- Category	JID!	1	Dev	relop	_3∰ Site Prep	Ourmitigated Construction On-Site	vie' A Г	w Ca	mm ^c ategory	S Pagitive Dust	Odf-Road	off Re	eport
Attachment 3 City					ion [) Oppor	c,	Evhib	itc	A pril					

8 AM	CO2e		0.0000	0.0000	193.3250	193.3250			CO2e		0.0000	4,028.8432	4,028.8432	
2016 3:5	N20								N20					
Date: 3/25/2016 3:58 AM	CH4	ау	0.0000	0.0000	0.0101	0.0101			CH4	ÁE		1.2265	1.2265	
Dat	Total CO2	lb/day	0.000.0	0.0000	193.1123	193.1123			Total CO2	lb/day	0.0000	4,003.0859 4,003.0859	4,003.0859	
	NBio- CO2		0.0000	0.0000	193.1123	193.1123			NBio- CO2			4,003.0859	4,003.0859 4,003.0859	
	Bio- CO2							Bio- CO2			0.0000	0.0000		
	PM2.5 Total		0.0000	0.0000	0.0549	0.0549		5	PM2.5 Total		3.8730	2.5339	6.4069	
of 30	Exhaust PM2.5		0.0000	0.0000	1.4900e- 003	1.4900e- 003		Exhaust PM2.5		0.0000	2.5339	2.5339		
Page 13 of 30	Fugitive PM2.5		0.0000	0.0000	0.0534	0.0534		Fugitive PM2.5		3.8730		3.8730		
L.	PM10 Total		0.0000	0.0000	0.2028	0.2028			PM10 Total		7.0458	2.7542	9.8001	
	Exhaust PM10	ay	0.0000	0.0000	1.6200e- 003	1.6200e- 003		Exhaust PM10	ay	0.0000	2.7542	2.7542		
	Fugitive PM10	lb/day	0.0000	0.0000	0.2012	0.2012			Fugitive PM10	lb/day	7.0458		7.0458	
2	SO2		0.0000	0.0000	2.3900e- 003	2.3900e- 003			S02			0.0391	0.0391	
od.2013.2	00		0.0000	0.0000	0.9706	0.9706	ΦI		00			39.3970	39.3970	1
CalEEMc	×ON		0.0000	0.0000	0.0929	0.0929	n On-Sit		NOx			51.7535	51.7535	
/ersion: (ROG		0.0000	0.0000	0.0687	0.0687	structio		ROG			4.8382	4.8382	
alEEMod Version: CalEEMod.2013.2.2 alEEMod Version: CalEEMod.2013.2.2 ale Construction Off-Site by Wale Construction Off-Site	issior	- Category	Jipi Jipi	Vendor	De/	velop	≥	Revie	v Co	mm(category	A Agitive Dust	Ooff-Road	aff Re	eport
Attachment 3 City			Om	mice										

8 AM	C02e		0.0000	0.0000	193.3250	193.3250			CO2e		0.0000	6,353.9915	6,353.9915	
Date: 3/25/2016 3:58 AM	NZO							N20						
e: 3/25/2	CH4	зу	0.0000	0.0000	0.0101	0.0101	5	CH4	ау		1.9344	1.9344		
Dat	Total CO2	lb/day	0.000.0	0.000.0	193.1123	193.1123			Total CO2	lb/day	0.0000	5,313.3690	6,313.3690	
	NBio- CO2		0.0000	0.0000	193.1123	193.1123			NBio- CO2		•	6,313.3690 6,313.3690	6,313.3690	
	Bio- CO2						1	Bio- CO2						
	PM2.5 Total		0.0000	0.0000	0.0549	0.0549			PM2.5 Total		3.5965	3.0518	6.6483	
of 30	Exhaust PM2.5		0.000.0	0.0000	1.4900e- 003	1.4900e- 003		Exhaust PM2.5		0.0000	3.0518	3.0518		
Page 14 of 30	Fugitive PM2.5		0.0000	0.0000	0.0534	0.0534		Fugitive PM2.5		3.5965		3.5965		
L.	PM10 Total		0.0000	0.0000	0.2028	0.2028		PM10 Total		8.6733	3.3172	11.9905		
	Exhaust PM10	ay	0.0000	0.0000	1.6200e- 003	1.6200e- 003		Exhaust PM10	lb/day	0.0000	3.3172	3.3172		
	Fugitive PM10	lb/day	0.0000	0.0000	0.2012	0.2012		Fugitive PM10		8.6733		8.6733		
2	S02		0.0000	0.0000	2.3900e- 003	2.3900e- 003			802			0.0617	0.0617	
od.2013.2	8		0.0000	0.0000	0.9706	0.9706	o ti o		8			46.8050	46.8050	
CalEEMo	Ň		0.0000	0.0000	0.0929	0.0929	ion O		×ON			69.5920	69.5920	
Version: 1	ROG		0.0000	0.0000	0.0687	0.0687	- 2017		ROG			6.0991	6.0991	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale	issior	- Category	JiDi Hauling	- L Vendor	De/	velok Total	3.4 Grading	Revie EQA [w Co	mer mer	A Presidence Dust	Ogf-Road	aff Re	port
Attachment 3 City			mm	mice	C - E	. AT IIU	(/ - C	,LUA L)UCU	0E 2	010			

Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

a AM	CO2e		0.0000	2,384.4425	3,071.7194	5,456.1619			CO2e		2,623.3517	2,623.3517	
2.53.55	NZO								NZO				
Date: 3/25/2016 3:58 AM	CH4	у́в	0.000.0	0.0175	0.1610	0.1784			CH4	ay	0.6387	0.6387	
Dat	Total CO2	lb/day	0.0000	2,384.0753	3,068.3392 3,068.3392	5,452.4145 5,452.4145			Total CO2	lb/day	2,609.9390 2,609.9390	2,609.9390	
	NBio- CO2		0.0000	2,384.0753 2,384.0753	3,068.3392	5,452.4145			NBio- CO2		2,609.9390	2,609.9390	
	Bio- CO2							Bio- CO2					
	PM2.5 Total		0.0000	0.3303	0.8715	1.2019			PM2.5 Total		1.4048	1.4048	
of 30	Exhaust PM2.5		0.0000 0.1309 0.0237	0.1546			Exhaust PM2.5		1.4048	1.4048			
Page 18 of 30	Fugitive PM2.5		0.000	0.1994	0.8478	1.0472		Fugitive PM2.5					
_	PM10 Total	ау	0.0000	0.8425	3.2225	4.0650			PM10 Total		1.4943	1.4943	
	Exhaust PM10		0.0000	0.1423	0.0257	0.1680	1	Exhaust PM10	lay	1.4943	1.4943		
	Fugitive PM10	lb/day	0.0000	0.7002	3.1968	3.8970		Fugitive PM10	lb/day				
2	802		0.0000	0.0242	0.0379	0.0621			802		0.0268	0.0268	
od.2013.	00		0.0000	12.7296	15.4217	28.1513	. 2018	Site	00		17.5327	17.5327	
CalEEMc	NOX		0.0000	9.0751	1.4767	10.5518	uction -	tion On	NOX		23.2608	23.2608	
Version:	ROG		0.0000	0.9367	1.0918	2.0285	Constr	Construc	ROG		2.6687	2.6687	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale Construction Off-Site by the Construction off-Site	ssior	- Category	JIPi Hauling	Vendor	Dev	. () Total	ે સ્ 3.એ Building	Oumitigated Construction On-Site S S S S S S S S S S S S S S S S S S S	ew C	umo Category	Off-Road	e Sta	ff Report
Development Re													

8 AM	CO2e		0.0000	2,344.4197	2,956.9028	5,301.3225			CO2e		2,623.3517	2,623.3517	
2.53.55	NZO								N20				
Date: 3/25/2016 3:58 AM	CH4	Я	0.000.0	0.0174	0.1494	0.1668			CH4	ay	0.6387	0.6387	
Dat	Total CO2	lb/day	0.0000	2,344.0544	2,953.7655 2,953.7655	5,297.8199 5,297.8199			Total CO2	lb/day	2,609.9389	2,609.9389	
	NBio- CO2		0.0000	2,344.0544 2,344.0544	2,953.7655	5,297.8199			NBio- CO2		2,609.9389 2,609.9389	2,609.9389	
	Bio- CO2							Bio- CO2		0.000.0	0.0000		
	PM2.5 Total		0.0000	0.3228	0.8710	1.1938	-	PM2.5 Total		1.4048	1.4048		
of 30	Exhaust PM2.5		0.0000	0.1234	0.0232	0.1465		Exhaust PM2.5		1.4048	1.4048		
Page 19 of 30	Fugitive PM2.5		0.0000	0.1994	0.8478	1.0472		Fugitive PM2.5					
_	PM10 Total	ау	0.0000	0.8343	3.2218	4.0561		PM10 Total		1.4943	1.4943		
	Exhaust PM10		0.0000		Exhaust PM10	lay	1.4943	1.4943					
	Fugitive PM10	lb/day	0.0000	0.7002	3.1968	3.8970	1 1	Fugitive PM10	lb/day				
2	802		0.0000	0.0241	0.0379	0.0621			S02		0.0268	0.0268	
od.2013.	00		0.0000	12.2153	13.9568	26.1721	el el		00		17.5327	17.5327	
CalEEMc	NOX		0.0000	8.3294	1.3393	9.6687	n On-Si		NOX		23.2608	23.2608	
Version:	ROG		0.0000	0.8757	0.9820	1.8576	nstructio		ROG		2.6687	2.6687	
alEEMod Version: CalEEMod.2013.2.2 alEeMod Version: CalEEMod.2013.2.2 ale Construction Off-Site by the Construction off-Site where the Construction off-Site ale Construction off-Site	ssior	X - Category	Jipi Iqing	. 1 \\	De'	velop	men#Bated Col	levie	и Са	udu Mucategory	itte	otal ⊇Sta	ff Report
Attachment 3 - City			Com	nmiss	sion F	Report	t and Exh	nibits -	April	05, 20	018		

5,301.3225

2,259.9481

2,259.948

C02e

0.0000

2,956.9028

2,344.4197

0.0000

C02e

AM
25/2016 3:58
Date: 3/2

AM S	CO2e		0.0000	0.0000	589.3128	589.3128				CO2e		15,417.7594	15,417.7594
Date: 3/25/2016 5:38 AM	NZO									N20		<u></u>	
N 10 10 10 10 10 10 10 10 10 10 10 10 10	CH4	ay	0.0000	0.000.0	0.0298	0.0298				CH4		0.3529	0.3529
	Total CO2	lb/day	0.0000	0.000.0	588.6875	588.6875				Total CO2	lb/day	,410.3488	,410.3488
	NBio- CO2		0.0000	0.000.0	588.6875	588.6875				NBio- CO2		15,410.3488 15,410.3488	15,410.3488 15,410.3488
	Bio- CO2									Bio- CO2 NB		15,4	15,4
	PM2.5 Total		0.000.0	0.000.0	0.1736	0.1736				PM2.5 Bic Total		3.4757	3.4757
,	Exhaust PM2.5		0.0000	0.000.0	4.6200e- 003	4.6200e- 003				Exhaust PM2.5		0.4654	0.4654
	Fugitive PM2.5		0.0000	0.0000	0.1690	0.1690				Fugitive E PM2.5		3.0104	3.0104
	PM10 Total		0.0000	0.0000	0.6421	0.6421				PM10 F		11.7254	11.7254
	Exhaust PM10	ay	0.000.0	0.0000	4.9900e- 003	4.9900e- 003				Exhaust PM10		0.5055	0.5055
	Fugitive PM10	lb/day	0.0000	0.0000	0.6371	0.6371				Fugitive PM10	lb/day	11.2199	11.2199
	S02		0.0000	0.0000	7.5600e- 003	7.5600e- 003						0.1820	0.1820
ଥା	00		0.000.0	0.0000	2.7816	2.7816	lobile	pile		00		55.1822	55.1822
n Off-Si	NOX		0.0000	0.0000	0.2669	0.2669	tail - N	ures Mc		×ON		30.2464	30.2464
<u>ıstructio</u>	ROG		0.0000	0.0000	0.1957	0.1957	onal De	n Meas		ROG		4.0536	4.0536
anning truction Off-site construction Off-si	ssior	- Category	J.Hauling	- Vendor			© G © Operati	Mitigatio	w Com	mitte	Category 15	Mitigated	A mitigated

	ROG	NOx	00	SO2	Fugitive PM10	Fugitive Exhaust PM10 PM10	PM10 Total	Fugitive PM2.5	Fugitive Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Bio-CO2 NBio-CO2 Total CO2	CH4	N20	C02e
Category					lb/day	ay							lb/day	49		
Witigated		30.2464	4.0536 30.2464 55.1822 0.1820	0.1820		11.2199 0.5055 11.7254 3.0104 0.4654 3.4757	11.7254	11.7254 3.0104 0.4654	0.4654	3.4757		15,410.3488	15,410.3488 15,410.3488 0.3529	0.3529		15,417.7594
nmitigated		30.2464	30.2464 55.1822	0.1820		11.2199 0.5055	11.7254	3.0104	11.7254 3.0104 0.4654	3.4757		15,410.3488	15,410.3488 15,410.3488 0.3529	0.3529		15,417.7594

Date: 3/25/20	Mitigated	Annual VMT	4,132,646			4,132,646		% esod.	Pass-t	С	0	0		SBUS	
	_							Trip Purpose %	Diverted	2	0	0		MCY	
	Unmitigated	Annual VMT	32,646			4,132,646			Primary	92	0	0		NBUS	
Q	Unr	Ann	4,132,646			4,7			H-O or C-NW	13.00	0.00	0.00		OBUS)
Page 25 of 30		Sunday	190.96	00.00	00.00	190.96		Trip %	H-S or C-C	28.00	0.00	0.00		呈	:
	Average Daily Trip Rate	Saturday St	·		0.00	458.92			H-W or C-W	29.00	00:0	0.00		MHD	
	Average Da		ļ						H-O or C-NW	06.9	6.90	6.90		LHD2	i
0		Weekday	1,176.56		00.00	1,176.56		Miles	H-S or C-C	8.40	8.40	8.40		LHD1	i
EMod.2013.2.2				faces			د		H-W or C-W	16.60	16.60	16.60		2 MDV	+
Development 3 City Blancing Commission Attachment 3 City Blancing Commission Other Blancing Commission Other Blancing Commission		Land Use	Manufacturing	Other Non-Asphalt Surf	Parking Lot	Total	্ৰ ক্ৰ Trip Type Information		Land Use	Manufacturing	Other Non-Asphalt Surfaces	Parking Lot		LDT1 LDT2	
Panning Commission - Exhibit 1 - 100 Development Review Committee -	eve Exi	op	m t 7	en - (R E	ev ZA	_4	on um		tt∈	O ther N	Sta	iff R	epa epa	art

Pass-by

SalEEMod Version: CalEEMod.2013.2.2	Version: (CalEEMo	od.2013.2	2.2			△	Page 26 of 30	of 30				Date	e: 3/25/2	Date: 3/25/2016 3:58 AM	3 AM	
5.744000 (0.000000	0.000000	0.000000		0.086000	0.000000	0.046000	0.046000 0.126000		0.000000	0.00000.0	0.000000		00	0.000000 0.0000000		
չ Դ Energy Detail	Detail																
Fleet Mix	_																
storical Energy Use: N	rgy Use:	z															
Mitigation Measures Energy	ın Meası	ures En	ergy														
- Fyla																	
.!h!+ 1																	
Do	ROG	×ON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2 T	Total CO2	CH4	N2O	CO2e	
Category					lb/day	ay							lb/day	>			
yaturalGas ∭itigated	0:3030	2.7541	2.3134	0.0165			0.2093		0.2093	0.2093		3,304.8574 3,304.8574	,304.8574	0.0633	9090.0	3,324.9702	
daturalGas nmitigated	0.3030	2.7541	2.3134	0.0165		0.2093	0.2093		0.2093	0.2093		3,304.8574 3,304.8574	,304.8574	0.0633	0.0606	3,324.9702	

Panting Committee - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018

Date: 3/25/2016 3:58 AM	
Page 27 of 30	
rsion: CalEEMod.2013.2.2	

		CO2e		0.0000	0.0000	3,324.9702	3,324.9702				CO2e		0.0000	3,324.9702	000000	3 324 9702
		N20		0.0000	0.0000	0.0606	0.0606				NZO		0.0000	0.0606	0.0000	
		CH4	lb/day	0.0000	0.0000	0.0633	0.0633				CH4	lb/day	0.0000	0.0633	0.0000	
		Total CO2	/qı	0.0000	0.0000	3,304.8574	3,304.8574				Total CO2	/qı	0.0000	3,304.8574	0.0000	
		NBio- CO2		0.000.0	0.000.0	3,304.8574 3,304.8574	3,304.8574				NBio- CO2		0.000.0	3,304.8574 3,304.8574	0.000.0	
		Bio- CO2		•••••							Bio- CO2					
		PM2.5 Total		0.0000	0.000.0	0.2093	0.2093				PM2.5 Total		0.0000	0.2093	0.000.0	
		Exhaust PM2.5		0.000	0.000.0	0.2093	0.2093				Exhaust PM2.5		0.0000	0.2093	0.000.0	
		Fugitive PM2.5									Fugitive PM2.5					İ
		PM10 Total		0.0000	0.0000	0.2093	0.2093				PM10 Total		0.0000	0.2093	0.0000	
		Exhaust PM10	13	0.0000	0.0000	0.2093	0.2093				Exhaust PM10	λī	0.0000	0.2093	0.0000	
		Fugitive PM10	lb/day								Fugitive PM10	lb/day				
		SO2		0.0000	0.000.0	0.0165	0.0165				S02		0.0000	0.0165	0.000.0	
as		8		0.0000	0.000.0	2.3134	2.3134				8		0.0000	2.3134	0.0000	
aturalG		×ON		0.000.0	0.000.0	2.7541	2.7541				×ON		0.0000	2.7541	0.0000	
Use - N		ROG		0.0000	0.0000	0.3030	0.3030				ROG		0.0000	0.3030	0.0000	
y Land		VaturalGas Use	kBTU/yr	0	0	28091.3					NaturalGas Use	kBTU/yr	0	28.0913	0	F
Energy b	omm ent Re	ccior	Land Use	Other Non- Thalt Surfaces	Parking Lot	ahufacturing	Total	men	tigated	vio		and Use	द्य arking Lot)		Ather Non- Asphalt Surfaces	

PalEEMod Version: CalEEMod.2013.2.2

0.0962

2.5000e-004

0.0910

0.0910

1.5000e-004

1.5000e-004

1.5000e-004

1.5000e-004

0.0000

C02e

N20

CH4

Total CO2

NBio-CO2

Bio-CO2

PM2.5 Total

Exhaust PM2.5

Fugitive PM2.5

PM10 Total

Exhaust PM10

Fugitive PM10

SO2

00

lb/day

0.0962

2.5000e-004

0.0910

0.0910

1.5000e-004

1.5000e-004

1.5000e-004

1.5000e-004

0.0000

rie'																
w Co	ROG	NOx	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N2O	C02e
₩ubCategory					lb/day	ay							lb/day	ay		
Coating	2.6523					0.000.0	0.0000		0.000.0	0.000.0			0.0000		•••••	0.0000
Consumer Products						i	0.0000		0.000.0	0.000.0						0.0000
Handscaping	4.0600e- 003	4.0000e- 004	0.0429	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0910	0.0910	2.5000e- 004		0.0962
Total O	16.1396	16.1396 4.0000e- 004	0.0429	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0910	0.0910	2.5000e- 004		0.0962

SOZ FLIGITION FLIGHTON FLIG	3:58 AM	N2O CO2e		0.0000	0.0000	0.0962	0.0962						 	De De
SO2 Fugitive Extraust PM10 Total PM25 PM25 Total PM25 PM25 Total PM25 PM25 PM25 PM25 Total PM25 PM2	5/2016		-			ф	ф							Fuel Type
SO2 Fugitive Extraust PM10 Total PM25 PM25 Total PM25 PM25 Total PM25 PM25 PM25 PM25 Total PM25 PM2	ate: 3/2.		/day			2.5000	2.5000							
SC2 Fugitive Exhaust PM10 Fugitive Exhaust PM25 PM2.5	ă		<u>a</u>	0.0000	0.0000	0.0910	0.0910							Load Factor
SC2 Fugitive Exhaust PM10 Fugitive Exhaust PM2.5		NBio- CO2				0.0910	0.0910							7
SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM10 0.00000 0.0000 0.														Horse Power
SO2 Fugitive Exhaust PM10 Fugitive PM10 Total PM25 Fugitive PM10 Fugitive PM100 0.00		PM2.5 Total		0.0000	0.0000	1.5000e- 004	1.5000e- 004							운
SO2 Fugitive Exhaust PM10 SO2 PM10 PM10 Total Ib/day 0.0000 0.0000 0.0000 1.5000e- 1.5000e- 004 0.004 004 0.004 004	of 30	Exhaust PM2.5		0.0000	0.0000	1.5000e- 004	1.5000e- 004							Year
SO2 Fugitive Exhaust PM10 SO2 PM10 PM10 Total Ib/day 0.0000 0.0000 0.0000 1.5000e- 1.5000e- 004 0.004 004 0.004 004	² age 29 c	Fugitive PM2.5												Days/Year
SO2 Fugitive PM10 0.0000 0.0000	L.	PM10 Total		0.0000	0.0000	1.5000e- 004	1.5000e- 004							
S.2.2 Fugitiv PM10 0.0000 0.0000		Exhaust PM10	lay	0.0000	0.0000	1.5000e- 004	1.5000e- 004							Hours/Day
		Fugitive PM10	p/qI											
EMod.2013.2 Dx CO 000e- 000e- 000429 Waste ad	5.5	802				0.0000	0.0000							Number
EMo	d.2013.2	8				0.0429	0.0429		ter		ste			_
	SalEEMo	×ON				4.0000e- 004	4.0000e- 004		ıres Wa		ıres Wa	froad		
Nersion: C ROG 13.4832 13.4832 16.1396 16.1396 In Measu	Version: C	ROG		2.6523	13.4832	4.0600e- 003	16.1396	etail	n Measu)etail	n Measu	onal Off		Equipment Type
Development September 13.4832 Locating Coasting	Panning Wood			rchitectural ○Coating	Consumer Products	(Jandscaping	velop	7∄ Water D	ot . Mitigatio	i∽ 3 : Ø Waste Ľ	3.9 ∭ Mitigatio	ætim Serativ	(t)	Sta

89 84

12

1.67

Forblits
Comerator Sets
Comerator Sets

	CO2e		456.9774	130.2315	587.2089						
	NZO										
	CH4	ay	0.1436	8.2400e- 003	0.1519						
	Total CO2	lb/day	453.9612	130.0585	584.0197						
	NBio- CO2	1	453.9612 453.9612	130.0585 130.0585 8.2400e-	584.0197						
	Bio- CO2	1		<u> </u>	<u> </u>						
	PM2.5 Total		0.3054	0.0471	0.3525						
	Exhaust PM2.5	1	0.3054	0.0471	0.3525						
	Fugitive PM2.5			-							
	PM10 Total		0.3320	0.0471	0.3791						
	Exhaust PM10	Ув	0.3320	0.0471							
	Fugitive PM10	lb/dl									
	802		4.5800e- 003	1.3700e- 003	5.9500e- 003						
ı	8	1	3.5826	0.7772	4.3598						
	×ON		4.2849	0.7886	5.0736	tion					
	ROG		0.4799	0.0927	0.5725	ègeta					
ng Co	mmi	U O pe	Porklifts	Seperator Gets		Deve detation The Report and Re	nent Rev	iew Co	mmit	tee St	taff R
bpmei	nt Re	viev	/ C c	j mn	littee	- Exhibit	7 - CEQA and Exhibi	Docui	ments	S	

Appendix B EMFAC2014 Results

Planning Commission - Exhibit 1 - Development Review Committee Development Review Committee - Exhibit 7 - CEQA Documents	Staff Report

PM10 Running											
HHDT											
	Baseline	Mitigated	Delta	%							
2018	0.19	0.01	-0.19	0.96							
20/15	0.12	0.01	-0 11	N 95							

PM10 Idling				
HHDT				
	Baseline	Mitigated	Delta	%
2018	0.55	0.00	-0.54	0.99
2045	0.35	0.00	-0.34	0.99

MHDT

	Baseline	Mitigated	Delta	%	
2018	0.21	0.00	-0.21	0.98	
2045	0.10	0.00	-0.10	0.96	

MHDT				
	Baseline	Mitigated	Delta	%
2018	0.11	0.00	-0.11	1.00
2045	0.06	0.00	-0.06	1.00

PM10 Running

L	4	L	4		•
г	1	г	1	υ	

	Baseline	Mitigated	Delta	%	
2018	193.37	8.21	-185.16	0.96	
2045	117.60	5.43	-112.17	0.95	

PM10 Idling

HHDT

	Baseline	Mitigated	Delta	%	
2018	548.56	3.59	-544.97	0.99	
2045	346.03	2.44	-343.58	0.99	

MHDT

1011121				
	Baseline	Mitigated	Delta	%
2018	214.74	4.06	-210.68	0.98
2045	100.42	3.62	-96.80	0.96

MHDT

	Baseline	Mitigated	Delta	%	
2018	107.82	0.13	-107.69	1.00	
2045	61.56	0.13	-61.43	1.00	

2018 - Baseline Center Street Building

EMFAC2014 (v1.0.7) Emission Rates Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2018

Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/day for VMT, trips/day for Trips, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HTSK and RUNLS, g/vehicle/day for IDLEX, RESTL and DIURN

Region	CalYr VehClass	MdlYr Speed	Fuel	PM10 RUNEX	PM10 IDLEX	Region	CalYr	VehClass	MdlYr	Speed	Fuel	PM10 RUNEX	PM10 IDLEX
Riverside (SC)	2018 HHDT	1974 Aggregated	DSL	0.339580421	1.424784096	Riverside (SC)		MHDT		Aggregated	DSL	0.60143572	
Riverside (SC)	2018 HHDT	1975 Aggregated	DSL	0.309086943	1.33948867	Riverside (SC)		MHDT		Aggregated	DSL		0.224260932
Riverside (SC)	2018 HHDT	1976 Aggregated	DSL	0.070516539	1.17619745	Riverside (SC)		MHDT		Aggregated	DSL		0.162952946
Riverside (SC)	2018 HHDT	1977 Aggregated	DSL	0.347934822	1.278258022	Riverside (SC)		MHDT		Aggregated	DSL		0.189436712
Riverside (SC)	2018 HHDT	1978 Aggregated	DSL	0.17163622	1.224488441	Riverside (SC)		MHDT		Aggregated	DSL		0.297032154
Riverside (SC)	2018 HHDT	1979 Aggregated	DSL	0.3014317	1.294006823	Riverside (SC)		MHDT		Aggregated	DSL	1.079067223	
Riverside (SC)	2018 HHDT	1980 Aggregated	DSL	0.248428206	1.262562289	Riverside (SC)		MHDT		Aggregated	DSL		0.163409698
Riverside (SC)	2018 HHDT	1981 Aggregated	DSL	0.377117006	1.31575757	Riverside (SC)		MHDT		Aggregated	DSL	0.181984875	
Riverside (SC)	2018 HHDT	1982 Aggregated	DSL	0.433743328	1.306282124	Riverside (SC)		MHDT		Aggregated	DSL		0.167495445
Riverside (SC)	2018 HHDT	1983 Aggregated	DSL	0.510976964	1.333317735	Riverside (SC)		MHDT		Aggregated	DSL	0.203546894	
Riverside (SC)	2018 HHDT	1984 Aggregated	DSL	0.405367111	1.30735173	Riverside (SC)		MHDT		Aggregated	DSL	0.366080564	
Riverside (SC)	2018 HHDT	1985 Aggregated	DSL	0.457076901	1.301139528	Riverside (SC)		MHDT		Aggregated	DSL	0.241742808	
Riverside (SC)	2018 HHDT	1986 Aggregated	DSL	0.466260428	1.309037489	Riverside (SC)		MHDT		Aggregated	DSL	0.218756888	
Riverside (SC)	2018 HHDT	1987 Aggregated	DSL	0.54716514	0.689737443	Riverside (SC)		MHDT		Aggregated	DSL		0.077337411
Riverside (SC)	2018 HHDT	1988 Aggregated	DSL	0.521168979	0.677700322	Riverside (SC)		MHDT		Aggregated	DSL	0.215711089	
	2018 HHDT		DSL	0.430455919	0.661397826			MHDT			DSL		0.096269365
Riverside (SC) Riverside (SC)	2018 HHDT	1989 Aggregated 1990 Aggregated	DSL	0.430433919	0.672770518	Riverside (SC) Riverside (SC)		MHDT		Aggregated Aggregated	DSL		0.096269363
			DSL	0.300132437	0.510553182	Riverside (SC)				Aggregated	DSL	0.085033603	
Riverside (SC)	2018 HHDT	1991 Aggregated						MHDT					
Riverside (SC)	2018 HHDT	1992 Aggregated	DSL	0.211736292	0.524432801	Riverside (SC)		MHDT		Aggregated	DSL	0.110170817	
Riverside (SC)	2018 HHDT	1993 Aggregated	DSL	0.253676216	0.550167661	Riverside (SC)		MHDT		Aggregated	DSL		0.070818441
Riverside (SC)	2018 HHDT	1994 Aggregated	DSL	0.158664339	0.403569209	Riverside (SC)		MHDT		Aggregated	DSL		0.061036333
Riverside (SC)	2018 HHDT	1995 Aggregated	DSL	0.175724325	0.412735104	Riverside (SC)		MHDT		Aggregated	DSL		0.056176196
Riverside (SC)	2018 HHDT	1996 Aggregated	DSL	0.1188319	0.358206615	Riverside (SC)		MHDT		Aggregated	DSL	0.084722606	
Riverside (SC)	2018 HHDT	1997 Aggregated	DSL	0.128985295	0.352930817	Riverside (SC)		MHDT		Aggregated	DSL		0.070096423
Riverside (SC)	2018 HHDT	1998 Aggregated	DSL	0.125104923	0.263449851	Riverside (SC)		MHDT		Aggregated	DSL		0.041787915
Riverside (SC)	2018 HHDT	1999 Aggregated	DSL	0.09761396	0.247813889	Riverside (SC)		MHDT		Aggregated	DSL		0.099767195
Riverside (SC)	2018 HHDT	2000 Aggregated	DSL	0.087724922	0.232812823	Riverside (SC)		MHDT		Aggregated	DSL		0.093941476
Riverside (SC)	2018 HHDT	2001 Aggregated	DSL	0.084771721	0.2447187	Riverside (SC)		MHDT		Aggregated	DSL		0.093668087
Riverside (SC)	2018 HHDT	2002 Aggregated	DSL	0.084263892	0.277696831	Riverside (SC)		MHDT		Aggregated	DSL		0.090566637
Riverside (SC)	2018 HHDT	2003 Aggregated	DSL	0.101677873	0.220178436	Riverside (SC)		MHDT		Aggregated	DSL		0.075795832
Riverside (SC)	2018 HHDT	2004 Aggregated	DSL	0.126205815	0.262411559	Riverside (SC)		MHDT		Aggregated	DSL		0.079764769
Riverside (SC)	2018 HHDT	2005 Aggregated	DSL	0.125939213	0.241892715	Riverside (SC)		MHDT		Aggregated	DSL	0.523750289	
Riverside (SC)	2018 HHDT	2006 Aggregated	DSL	0.123446535	0.231465057	Riverside (SC)		MHDT		Aggregated	DSL		0.079101261
Riverside (SC)	2018 HHDT	2007 Aggregated	DSL	0.086577964	0.235455895	Riverside (SC)	2018	MHDT	2007	Aggregated	DSL	0.345594347	0.065885984
Riverside (SC)	2018 HHDT	2008 Aggregated	DSL	0.055123223	0.050600678	Riverside (SC)	2018	MHDT		Aggregated	DSL	0.029559247	0.002806113
Riverside (SC)	2018 HHDT	2009 Aggregated	DSL	0.044034238	0.002589372	Riverside (SC)	2018	MHDT		Aggregated	DSL		0.000132354
Riverside (SC)	2018 HHDT	2010 Aggregated	DSL	0.037630318	0.002762422	Riverside (SC)	2018	MHDT		Aggregated	DSL		0.000132354
Riverside (SC)	2018 HHDT	2011 Aggregated	DSL	0.012881023	0.002922484	Riverside (SC)	2018	MHDT	2011	Aggregated	DSL	0.006096323	0.000132354
Riverside (SC)	2018 HHDT	2012 Aggregated	DSL	0.006284406	0.003842831	Riverside (SC)	2018	MHDT	2012	Aggregated	DSL	0.002933926	0.000132354
Riverside (SC)	2018 HHDT	2013 Aggregated	DSL	0.00536237	0.003175574	Riverside (SC)	2018	MHDT	2013	Aggregated	DSL	0.00266385	0.000132354
Riverside (SC)	2018 HHDT	2014 Aggregated	DSL	0.004322408	0.003441434	Riverside (SC)	2018	MHDT	2014	Aggregated	DSL	0.002245171	0.000132354
Riverside (SC)	2018 HHDT	2015 Aggregated	DSL	0.003845544	0.003548693	Riverside (SC)	2018	MHDT	2015	Aggregated	DSL	0.002045193	0.000132354
Riverside (SC)	2018 HHDT	2016 Aggregated	DSL	0.003497027	0.003575278	Riverside (SC)	2018	MHDT	2016	Aggregated	DSL	0.001900339	0.000132354
Riverside (SC)	2018 HHDT	2017 Aggregated	DSL	0.003144231	0.003684579	Riverside (SC)	2018	MHDT	2017	Aggregated	DSL	0.001753631	0.000132354
Riverside (SC)	2018 HHDT	2018 Aggregated	DSL	0.00276489	0.003495803	Riverside (SC)	2018	MHDT	2018	Aggregated	DSL	0.001608018	0.000132354
Riverside (SC)	2018 HHDT	2019 Aggregated	DSL	0.002360264	0.005480458	Riverside (SC)	2018	MHDT	2019	Aggregated	DSL	0.001462138	0.000132354
				0.193371008	0.548562801							0.214739622	0.107818774

2018 - Baseline Center Street Building

2018 - Mitigated Center Street Building

EMFAC2014 (v1.0.7) Emission Rates Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2018

Season: Annual Vehicle Classification: EMFAC2007 Categories

Units: miles/day for VMT, trips/day for Trips, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HTSK and RUNLS, g/vehicle/day for IDLEX, RESTL and DIURN

Region	CalYr VehClass	MdlYr Speed	Fuel	PM10_RUNEX	PM10_IDLEX	Region	CalYr VehClass	MdlYr Speed	Fuel	PM10_RUNEX	PM10_IDLEX
Riverside	(: 2018 HHDT	2010 Aggregated	DSL	0.037630318	0.002762422	Riverside (SC)	2018 MHDT	2010 Aggregated	DSL	0.01785778	0.000132354
Riverside	(: 2018 HHDT	2011 Aggregated	DSL	0.012881023	0.002922484	Riverside (SC)	2018 MHDT	2011 Aggregated	DSL	0.006096323	0.000132354
Riverside	(: 2018 HHDT	2012 Aggregated	DSL	0.006284406	0.003842831	Riverside (SC)	2018 MHDT	2012 Aggregated	DSL	0.002933926	0.000132354
Riverside	(: 2018 HHDT	2013 Aggregated	DSL	0.00536237	0.003175574	Riverside (SC)	2018 MHDT	2013 Aggregated	DSL	0.00266385	0.000132354
Riverside	(: 2018 HHDT	2014 Aggregated	DSL	0.004322408	0.003441434	Riverside (SC)	2018 MHDT	2014 Aggregated	DSL	0.002245171	0.000132354
Riverside	(: 2018 HHDT	2015 Aggregated	DSL	0.003845544	0.003548693	Riverside (SC)	2018 MHDT	2015 Aggregated	DSL	0.002045193	0.000132354
Riverside	(: 2018 HHDT	2016 Aggregated	DSL	0.003497027	0.003575278	Riverside (SC)	2018 MHDT	2016 Aggregated	DSL	0.001900339	0.000132354
Riverside	(: 2018 HHDT	2017 Aggregated	DSL	0.003144231	0.003684579	Riverside (SC)	2018 MHDT	2017 Aggregated	DSL	0.001753631	0.000132354
Riverside	(: 2018 HHDT	2018 Aggregated	DSL	0.00276489	0.003495803	Riverside (SC)	2018 MHDT	2018 Aggregated	DSL	0.001608018	0.000132354
Riverside	(: 2018 HHDT	2019 Aggregated	DSL	0.002360264	0.005480458	Riverside (SC)	2018 MHDT	2019 Aggregated	DSL	0.001462138	0.000132354
				0.008209248	0.003592956					0.004056637	0.000132354

2018 - Mitigated Center Street Building

2045 - Future Baseline Center Street Building

EMFAC2014 (v1.0.7) Emission Rates

Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2045

Vehicle Classification: EMFAC2007 Categories

Units: miles/day for VMT, trips/day for Trips, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HTSK and RUNLS, g/vehicle/day for IDLEX, RESTL and DIURN

Region	CalVr	VehClass	MdlYr	Sneed	Fuel	PM10 RUNEX	PM10 IDLEX	Region	CalYr VehClass	MdlYr Speed	Fuel	PM10 RUNEX	PM10 IDLEX
Riverside (S				Aggregated	DSL	0.339580421	1.424784096	Riverside (SC)	2018 MHDT	1974 Aggregated	DSL	0.60143572	0.452585847
Riverside (S				Aggregated	DSL	0.309086943	1.33948867	Riverside (SC)	2018 MHDT	1975 Aggregated	DSL	0.299540436	
Riverside (S				Aggregated	DSL	0.070516539	1.17619745	Riverside (SC)	2018 MHDT	1976 Aggregated	DSL	0.202093502	
Riverside (5	2018	HHDT	1977	Aggregated	DSL	0.347934822	1.278258022	Riverside (SC)	2018 MHDT	1977 Aggregated	DSL	0.2600571	0.189436712
Riverside (S				Aggregated	DSL	0.17163622	1.224488441	Riverside (SC)	2018 MHDT	1978 Aggregated	DSL	0.413111396	0.297032154
Riverside (S				Aggregated	DSL	0.3014317	1.294006823	Riverside (SC)	2018 MHDT	1979 Aggregated	DSL	1.079067223	0.719076004
Riverside (S				Aggregated	DSL	0.248428206	1.262562289	Riverside (SC)	2018 MHDT	1980 Aggregated	DSL	0.207016538	0.163409698
Riverside (5 Riverside (5				Aggregated Aggregated	DSL DSL	0.377117006 0.433743328	1.31575757 1.306282124	Riverside (SC) Riverside (SC)	2018 MHDT 2018 MHDT	1981 Aggregated 1982 Aggregated	DSL DSL	0.181984875 0.204528238	0.150689313 0.167495445
Riverside (S				Aggregated	DSL	0.510976964	1.333317735	Riverside (SC)	2018 MHDT	1983 Aggregated	DSL	0.203546894	0.169141288
Riverside (S				Aggregated	DSL	0.405367111	1.30735173	Riverside (SC)	2018 MHDT	1984 Aggregated	DSL	0.366080564	0.293059458
Riverside (S				Aggregated	DSL	0.457076901	1.301139528	Riverside (SC)	2018 MHDT	1985 Aggregated	DSL	0.241742808	0.202686108
Riverside (5	2018	HHDT	1986	Aggregated	DSL	0.466260428	1.309037489	Riverside (SC)	2018 MHDT	1986 Aggregated	DSL	0.218756888	0.187754647
Riverside (5	2018	HHDT	1987	Aggregated	DSL	0.54716514	0.689737443	Riverside (SC)	2018 MHDT	1987 Aggregated	DSL	0.204953986	0.077337411
Riverside (5				Aggregated	DSL	0.521168979	0.677700322	Riverside (SC)	2018 MHDT	1988 Aggregated	DSL	0.215711089	0.08348071
Riverside (S				Aggregated	DSL	0.430455919	0.661397826	Riverside (SC)	2018 MHDT	1989 Aggregated	DSL	0.245502164	0.096269365
Riverside (S				Aggregated	DSL	0.500132437	0.672770518	Riverside (SC)	2018 MHDT	1990 Aggregated	DSL	0.21319018	0.084508973
Riverside (5 Riverside (5				Aggregated Aggregated	DSL	0.18479219 0.211736292	0.510553182 0.524432801	Riverside (SC) Riverside (SC)	2018 MHDT 2018 MHDT	1991 Aggregated 1992 Aggregated	DSL	0.085033603 0.110170817	0.049146305
Riverside (S				Aggregated	DSL	0.253676216		Riverside (SC)	2018 MHDT	1993 Aggregated	DSL	0.120055563	
Riverside (S				Aggregated	DSL	0.158664339	0.403569209	Riverside (SC)	2018 MHDT	1994 Aggregated	DSL	0.087060167	0.061036333
Riverside (S				Aggregated	DSL	0.175724325	0.412735104	Riverside (SC)	2018 MHDT	1995 Aggregated	DSL	0.08036678	0.056176196
Riverside (5	2018	HHDT	1996	Aggregated	DSL	0.1188319	0.358206615	Riverside (SC)	2018 MHDT	1996 Aggregated	DSL	0.084722606	0.063264387
Riverside (Aggregated	DSL	0.128985295	0.352930817	Riverside (SC)	2018 MHDT	1997 Aggregated	DSL	0.090398824	0.070096423
Riverside (S				Aggregated	DSL	0.125104923	0.263449851	Riverside (SC)	2018 MHDT	1998 Aggregated	DSL	0.086331296	0.041787915
Riverside (S				Aggregated	DSL	0.09761396	0.247813889	Riverside (SC)	2018 MHDT	1999 Aggregated	DSL	0.336026464	0.099767195
Riverside (5				Aggregated Aggregated	DSL DSL	0.087724922 0.035435204	0.232812823 0.248298366	Riverside (SC) Riverside (SC)	2018 MHDT 2045 MHDT	2000 Aggregated 2001 Aggregated	DSL DSL	0.315405174 0.038794895	0.093941476 0.015983116
Riverside (S				Aggregated	DSL	0.033433204	0.293269047	Riverside (SC)	2045 MHDT	2002 Aggregated	DSL	0.038794893	0.015983116
Riverside (S				Aggregated	DSL	0.057747584	0.209689408	Riverside (SC)	2045 MHDT	2003 Aggregated	DSL	0.068482784	0.013043803
Riverside (S	2045	HHDT		Aggregated	DSL	0.074448533	0.244159924	Riverside (SC)	2045 MHDT	2004 Aggregated	DSL	0.068172151	
Riverside (S	2045	HHDT	2005	Aggregated	DSL	0.0616017	0.223800916	Riverside (SC)	2045 MHDT	2005 Aggregated	DSL	0.0678726	0.013043803
Riverside (S				Aggregated	DSL	0.048927059	0.211635735	Riverside (SC)	2045 MHDT	2006 Aggregated	DSL	0.067598993	0.013043803
Riverside (S				Aggregated	DSL	0.038398217	0.267812674	Riverside (SC)	2045 MHDT	2007 Aggregated	DSL	0.048408897	0.011401834
Riverside (S				Aggregated	DSL	0.027488716	0.038075872	Riverside (SC)	2045 MHDT	2008 Aggregated	DSL	0.025726474	0.002806113
Riverside (5				Aggregated Aggregated	DSL DSL	0.016000227 0.010939172	0.001795764 0.00179486	Riverside (SC) Riverside (SC)	2045 MHDT 2045 MHDT	2009 Aggregated 2010 Aggregated	DSL DSL	0.019371098 0.017167795	0.000132354 0.000132354
Riverside (S				Aggregated	DSL	0.010333172	0.001793505	Riverside (SC)	2045 MHDT	2011 Aggregated	DSL		0.000132354
Riverside (S				Aggregated	DSL	0.00767415	0.001781295	Riverside (SC)	2045 MHDT	2012 Aggregated	DSL	0.004862532	0.000132354
Riverside (S				Aggregated	DSL	0.007315117	0.00143459	Riverside (SC)	2045 MHDT	2013 Aggregated	DSL	0.004707631	0.000132354
Riverside (5	2045	HHDT	2014	Aggregated	DSL	0.006091599	0.001756711	Riverside (SC)	2045 MHDT	2014 Aggregated	DSL	0.003923612	0.000132354
Riverside (5	2045	HHDT	2015	Aggregated	DSL	0.005827247	0.001629336	Riverside (SC)	2045 MHDT	2015 Aggregated	DSL	0.003741706	0.000132354
Riverside (5				Aggregated	DSL	0.005759388	0.001829322	Riverside (SC)	2045 MHDT	2016 Aggregated	DSL	0.003744844	0.000132354
Riverside (S				Aggregated	DSL	0.00582758	0.0018337	Riverside (SC)	2045 MHDT	2017 Aggregated	DSL	0.003741489	0.000132354
Riverside (5 Riverside (5				Aggregated Aggregated	DSL	0.005611642 0.00558994	0.001740459 0.001720289	Riverside (SC) Riverside (SC)	2045 MHDT 2045 MHDT	2018 Aggregated 2019 Aggregated	DSL DSL	0.003722217 0.003723805	0.000132354 0.000132354
Riverside (S				Aggregated	DSL	0.005588417	0.001726283	Riverside (SC)	2045 MHDT	2020 Aggregated	DSL	0.003723805	0.000132354
Riverside (S				Aggregated	DSL	0.00558363	0.001678615	Riverside (SC)	2045 MHDT	2021 Aggregated	DSL	0.00372634	0.000132354
Riverside (5				Aggregated	DSL	0.005621675	0.001686608	Riverside (SC)	2045 MHDT	2022 Aggregated	DSL	0.003727916	0.000132354
Riverside (5	2045	HHDT	2023	Aggregated	DSL	0.005613629	0.001691297	Riverside (SC)	2045 MHDT	2023 Aggregated	DSL	0.003729168	0.000132354
Riverside (Aggregated	DSL	0.005597044	0.00169657	Riverside (SC)	2045 MHDT	2024 Aggregated	DSL	0.003671005	0.000132354
Riverside (S				Aggregated	DSL	0.005599477	0.00171768	Riverside (SC)	2045 MHDT	2025 Aggregated	DSL	0.003610344	0.000132354
Riverside (S				Aggregated	DSL	0.005606957	0.001752632	Riverside (SC)	2045 MHDT	2026 Aggregated	DSL	0.003548234	0.000132354
Riverside (5 Riverside (5				Aggregated	DSL	0.005618639 0.005625613	0.001807955 0.001888678	Riverside (SC) Riverside (SC)	2045 MHDT 2045 MHDT	2027 Aggregated	DSL	0.003486108	0.000132354
Riverside (Aggregated Aggregated	DSL	0.005639891		Riverside (SC)	2045 MHDT	2028 Aggregated 2029 Aggregated	DSL		0.000132354
Riverside (Aggregated	DSL	0.005657294		Riverside (SC)	2045 MHDT	2030 Aggregated	DSL	0.003300270	0.000132354
Riverside (Aggregated	DSL		0.002161786	Riverside (SC)	2045 MHDT	2031 Aggregated	DSL		0.000132354
Riverside (5	2045	HHDT		Aggregated	DSL	0.005681137		Riverside (SC)	2045 MHDT	2032 Aggregated	DSL		0.000132354
Riverside (Aggregated	DSL		0.002365316	Riverside (SC)	2045 MHDT	2033 Aggregated	DSL		0.000132354
Riverside (S				Aggregated	DSL		0.002475435	Riverside (SC)	2045 MHDT	2034 Aggregated	DSL		0.000132354
Riverside (S				Aggregated	DSL		0.002595989	Riverside (SC)	2045 MHDT	2035 Aggregated	DSL		0.000132354
Riverside (S				Aggregated	DSL	0.005464408	0.002727849 0.002884562	Riverside (SC)	2045 MHDT	2036 Aggregated	DSL		0.000132354
Riverside (5				Aggregated Aggregated	DSL DSL		0.002884562	Riverside (SC) Riverside (SC)	2045 MHDT 2045 MHDT	2037 Aggregated 2038 Aggregated	DSL DSL		0.000132354 0.000132354
Riverside (S				Aggregated	DSL		0.003341645	Riverside (SC)	2045 MHDT	2039 Aggregated	DSL		0.000132354
Riverside (Aggregated	DSL	0.004642747		Riverside (SC)	2045 MHDT	2040 Aggregated	DSL		0.000132354
Riverside (S				Aggregated	DSL	0.004306081	0.003798251	Riverside (SC)	2045 MHDT	2041 Aggregated	DSL		0.000132354
Riverside (5	2045	HHDT	2042	Aggregated	DSL	0.003959495	0.003968424	Riverside (SC)	2045 MHDT	2042 Aggregated	DSL	0.002063076	0.000132354
Riverside (5				Aggregated	DSL	0.003564188		Riverside (SC)	2045 MHDT	2043 Aggregated	DSL		0.000132354
Riverside (Aggregated	DSL	0.00320201		Riverside (SC)	2045 MHDT	2044 Aggregated	DSL		0.000132354
Riverside (S				Aggregated	DSL	0.002808033		Riverside (SC)	2045 MHDT	2045 Aggregated	DSL		0.000132354
Riverside (5	2045	нниТ	2046	Aggregated	DSL	0.002372991	0.005807099	Riverside (SC)	2045 MHDT	2046 Aggregated	DSL		0.000132354
						0.117596568	0.346026245					0.100422746	0.061560904

Planning Commission - Exhibit 1 - Development Review Committee Staff Report Development Review Committee - Exhibit 7 - CEQA Documents Attachment 3 - City Planning Commission Report and Exhibits - April 05, 2018 2045 - Future Baseline Center Street Building

EMFAC2014 (v1.0.7) Emission Rates

Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2045 Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/day for VMT, trips/day for Trips, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HTSK and RUNLS, g/vehicle/day for IDLEX, RESTL and DIURN

Riverside (T MITO_KONEX	PM10_IDLEX	Region		VehClass		Speed	Fuel	TIVITO_ROTALX	PM10_IDLEX
	2045	HHDT	2010	Aggregated	DSL	0.010939172	0.00179486	Riverside (SC)	2045	MHDT	2010	Aggregated	DSL	0.017167795	0.000132354
Riverside (2045	HHDT	2011	Aggregated	DSL	0.00441977	0.001793505	Riverside (SC)	2045	MHDT	2011	Aggregated	DSL	0.006037911	0.000132354
Riverside (2045	HHDT	2012	Aggregated	DSL	0.00767415	0.001781295	Riverside (SC)	2045	MHDT	2012	Aggregated	DSL	0.004862532	0.000132354
Riverside (2045	HHDT	2013	Aggregated	DSL	0.007315117	0.00143459	Riverside (SC)	2045	MHDT	2013	Aggregated	DSL	0.004707631	0.000132354
Riverside (2045	HHDT	2014	Aggregated	DSL	0.006091599	0.001756711	Riverside (SC)	2045	MHDT	2014	Aggregated	DSL	0.003923612	0.000132354
Riverside (2045	HHDT	2015	Aggregated	DSL	0.005827247	0.001629336	Riverside (SC)	2045	MHDT	2015	Aggregated	DSL	0.003741706	0.000132354
Riverside (2045	HHDT	2016	Aggregated	DSL	0.005759388	0.001829322	Riverside (SC)	2045	MHDT	2016	Aggregated	DSL	0.003744844	0.000132354
Riverside (2045	HHDT	2017	Aggregated	DSL	0.00582758	0.0018337	Riverside (SC)	2045	MHDT	2017	Aggregated	DSL	0.003741489	0.000132354
Riverside (2045	HHDT	2018	Aggregated	DSL	0.005611642	0.001740459	Riverside (SC)	2045	MHDT	2018	Aggregated	DSL	0.003722217	0.000132354
Riverside (2045	HHDT	2019	Aggregated	DSL	0.00558994	0.001720289	Riverside (SC)	2045	MHDT	2019	Aggregated	DSL	0.003723805	0.000132354
Riverside (2045	HHDT	2020	Aggregated	DSL	0.005588417	0.001706976	Riverside (SC)	2045	MHDT	2020	Aggregated	DSL	0.003724806	0.000132354
Riverside (2045	HHDT	2021	Aggregated	DSL	0.00558363	0.001678615	Riverside (SC)	2045	MHDT	2021	Aggregated	DSL	0.00372634	0.000132354
Riverside (2045	HHDT	2022	Aggregated	DSL	0.005621675	0.001686608	Riverside (SC)	2045	MHDT	2022	Aggregated	DSL	0.003727916	0.000132354
Riverside (2045	HHDT	2023	Aggregated	DSL	0.005613629	0.001691297	Riverside (SC)	2045	MHDT	2023	Aggregated	DSL	0.003729168	0.000132354
Riverside (2045	HHDT	2024	Aggregated	DSL	0.005597044	0.00169657	Riverside (SC)	2045	MHDT	2024	Aggregated	DSL	0.003671005	0.000132354
Riverside (2045	HHDT	2025	Aggregated	DSL	0.005599477	0.00171768	Riverside (SC)	2045	MHDT	2025	Aggregated	DSL	0.003610344	0.000132354
Riverside (2045	HHDT	2026	Aggregated	DSL	0.005606957	0.001752632	Riverside (SC)	2045	MHDT	2026	Aggregated	DSL	0.003548234	0.000132354
Riverside (2045	HHDT	2027	Aggregated	DSL	0.005618639	0.001807955	Riverside (SC)	2045	MHDT	2027	Aggregated	DSL	0.003486108	0.000132354
Riverside (2045	HHDT	2028	Aggregated	DSL	0.005625613	0.001888678	Riverside (SC)	2045	MHDT	2028	Aggregated	DSL	0.003423401	0.000132354
Riverside (2045	HHDT	2029	Aggregated	DSL	0.005639891	0.001976009	Riverside (SC)	2045	MHDT	2029	Aggregated	DSL	0.003360276	0.000132354
Riverside (2045	HHDT	2030	Aggregated	DSL	0.005657294	0.002072636	Riverside (SC)	2045	MHDT	2030	Aggregated	DSL	0.003296751	0.000132354
Riverside (2045	HHDT	2031	Aggregated	DSL	0.005673914	0.002161786	Riverside (SC)	2045	MHDT	2031	Aggregated	DSL	0.003234969	0.000132354
Riverside (2045	HHDT	2032	Aggregated	DSL	0.005681137	0.002260572	Riverside (SC)	2045	MHDT	2032	Aggregated	DSL	0.003162808	0.000132354
Riverside (2045	HHDT	2033	Aggregated	DSL	0.005690356	0.002365316	Riverside (SC)	2045	MHDT	2033	Aggregated	DSL	0.003082384	0.000132354
Riverside (2045	HHDT	2034	Aggregated	DSL	0.005692275	0.002475435	Riverside (SC)	2045	MHDT	2034	Aggregated	DSL	0.002995432	0.000132354
Riverside (2045	HHDT	2035	Aggregated	DSL	0.005590931	0.002595989	Riverside (SC)	2045	MHDT	2035	Aggregated	DSL	0.002902062	0.000132354
Riverside (2045	HHDT	2036	Aggregated	DSL	0.005464408	0.002727849	Riverside (SC)	2045	MHDT	2036	Aggregated	DSL	0.002802618	0.000132354
Riverside (2045	HHDT	2037	Aggregated	DSL	0.00533664	0.002884562	Riverside (SC)	2045	MHDT	2037	Aggregated	DSL	0.002696898	0.000132354
Riverside (2045	HHDT	2038	Aggregated	DSL	0.005134355	0.003081722	Riverside (SC)	2045	MHDT	2038	Aggregated	DSL	0.002584151	0.000132354
Riverside (2045	HHDT	2039	Aggregated	DSL	0.0049104	0.003341645	Riverside (SC)	2045	MHDT	2039	Aggregated	DSL	0.002464535	0.000132354
Riverside (2045	HHDT	2040	Aggregated	DSL	0.004642747	0.003659059	Riverside (SC)	2045	MHDT	2040	Aggregated	DSL	0.002337577	0.000132354
Riverside (2045	HHDT	2041	Aggregated	DSL	0.004306081	0.003798251	Riverside (SC)	2045	MHDT	2041	Aggregated	DSL	0.002203536	0.000132354
Riverside (2045	HHDT	2042	Aggregated	DSL	0.003959495	0.003968424	Riverside (SC)	2045	MHDT	2042	Aggregated	DSL	0.002063076	0.000132354
Riverside (2045	HHDT	2043	Aggregated	DSL	0.003564188	0.003815205	Riverside (SC)	2045	MHDT	2043	Aggregated	DSL	0.001917658	0.000132354
Riverside (2045	HHDT	2044	Aggregated	DSL	0.00320201	0.004184393	Riverside (SC)	2045	MHDT	2044	Aggregated	DSL	0.001769533	0.000132354
Riverside (2045	HHDT	2045	Aggregated	DSL	0.002808033	0.004311138	Riverside (SC)	2045	MHDT	2045	Aggregated	DSL	0.001621893	0.000132354
Riverside (2045	HHDT	2046	Aggregated	DSL	0.002372991	0.005807099	Riverside (SC)	2045	MHDT	2046	Aggregated	DSL	0.001474756	0.000132354
						0.005428049	0.002444005							0.003621399	0.000132354

