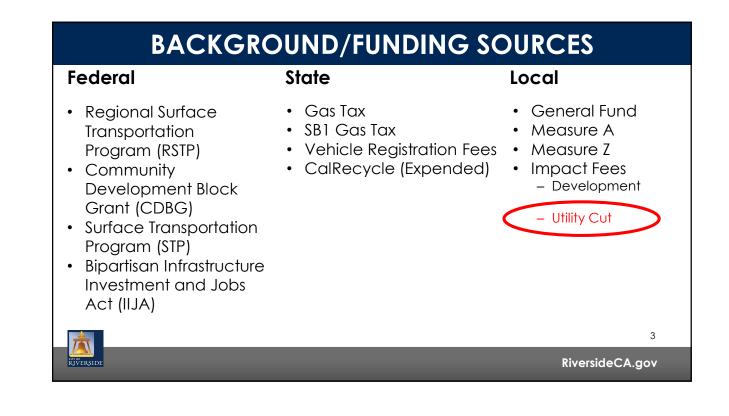


BACKGROUND


Factors contributing to declines in the network pavement condition

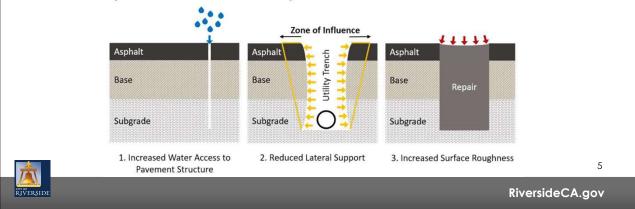
- Inflation, higher construction costs
- Funding Gap between target PCI and available budget
- Water and weather-related damage, storm-related impacts
- Damage to roadways from
 construction and heavy vehicles

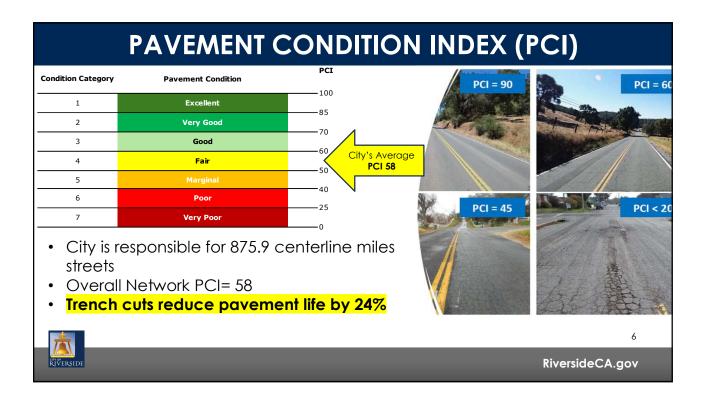
NIVERSID

BACKGROUND – BEST PRACTICES

1) GIS Paving Map

RIVERSID


- 2) Paving Moratorium 3 to 5 years
- 3) Updated Std. Drawing 453 detail and standardize trench repairs
- 4) Refinanced the 2013 Debt Obligation
- 5) On-Call Contractor to repair the RPU water line temporary patches
- 6) Actively surveying City streets to have latest PCI information
- 7) Using Lucity software to make PMP recommendations
- 8) Piloted a 100% Recycled Product
- 9) Asphalt grindings for unimproved alleys

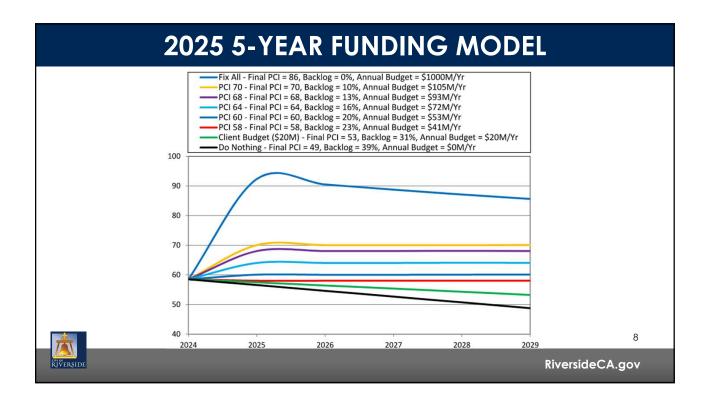

- 10) Will pilot "Cool" pavement
- 11) Appropriate one-time \$10 million to address paving needs
- 12)Identified \$5.325 in equipment needs – will pursue grant funding
- 13) Assess truck traffic volumes and consider Axle Restrictions
- 14)Continue to assess emerging technology, materials, and best practices

ROAD DAMAGE BY TRENCHING OPERATIONS

- 1. Water Intrusion leads to cracking
- 2. Zone of Influence (2-ft beyond the cut) lateral support becomes weak and unstable.
- 3. 90% compaction is not always achieved.

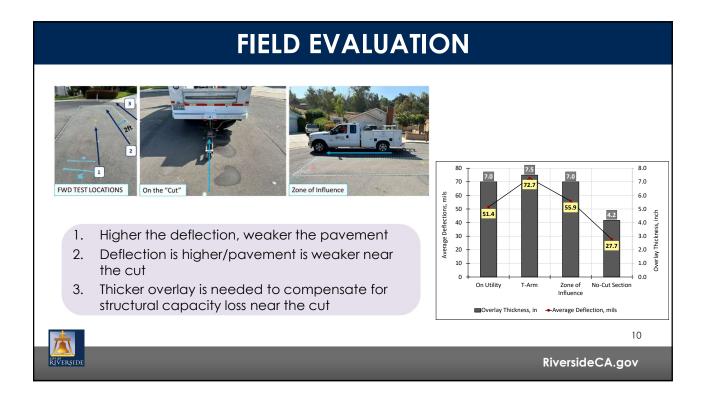
5-YEAR PCI AND FUNDING ANALYSIS

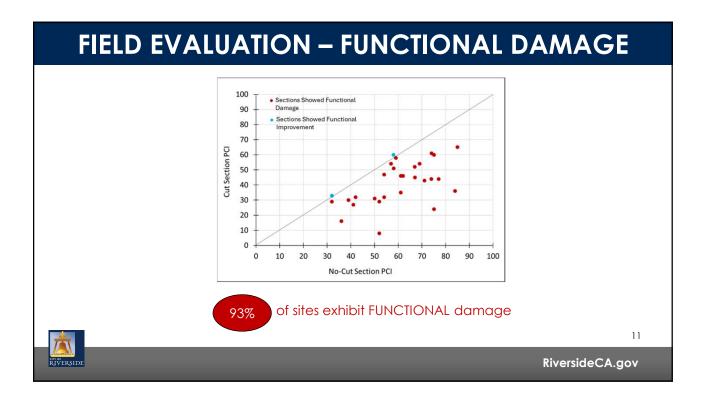
2025 PCI & Funding Analysis			
Annual Budget	PCI	Backlog	
\$0	49	39%	
\$20	53	31%	
\$41M	58	23%	
\$53M	60	20%	
\$72M	64	16%	
\$93M	68	13%	
\$105M	70	10%	


Pavement Management Program Annual Budget

Fiscal		F	s)			
Year	Measure	State Gas	SB1 Gas Tax	CDBG	Measure	Subtotal
	A	Tax			L	
2016/17	\$13.50			NA	\$13.50	
2017/18	\$13.50			\$2.875	\$16.375	
2018/19	\$13.50			\$2.875	\$16.375	
2019/20	\$2.40	\$2.80	\$5.40	\$2.60	\$7.80	\$21.00
2020/21	\$1.20	\$1.40	\$2.70	\$0	\$7.80	\$15.80
2021/22	\$2.00	\$2.80	\$6.40	\$1.20	\$7.80	\$20.20
2022/23	\$2.40	\$2.10	\$7.20	\$1.90	\$12.30	\$25.90
2023/24	\$2.40	\$1.80	\$7.70	\$1.10	\$8.80	\$31.80*
2024/25	\$2.40	\$2.45	\$7.45	\$1.63	\$12.00	\$25.93

* A one-time \$10 million appropriation from the General Fund


RIVERSIDE


7

METHODOLOGY

FIELD EVALUATION SUMMARY

A TOTAL OF 30 SITES WERE EVALUATED

- <u>Utility cuts cause damage to pavements.</u>
 - 97% percent of the test sites were either structurally or functionally damaged by utility cuts.
 - 73% percent of the test sites had both structural and functional damage.
- Utility cuts cause structural damage to pavements.
 - An average overlay thickness of **<u>4 inches is needed</u>** to compensate for the loss in structural capacity.
- Overall, pavements with cuts deteriorate more rapidly than those without cuts.
 - An average condition reduction of <u>18 PCI points</u> was observed when utility cuts were present.
- Utility cuts cause damage to the pavement beyond the edge of the cuts (2-ft Zone of Influence).

PROPOSED TRENCH CUT FEE SCHEDULE

Functional Class	PCI Group	Fees (\$/SF*)	
	PCI ≥ 60	\$	5.00
Arterials/Collectors	25 ≤ PCI < 60	\$	3.50
	PCI < 25	\$	0.00
Residentials	PCI ≥ 70	\$	4.50
	25 ≤ PCI < 70	\$	3.50
	PCI < 25	\$	0.00

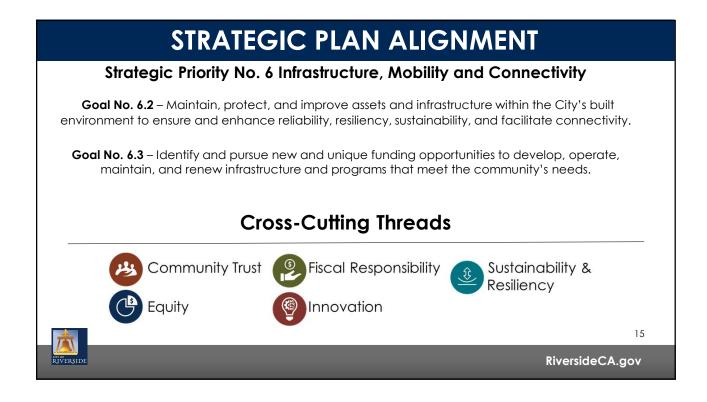
MAXIMUM DAMAGE COST OF STRUCTURAL AND FUNCTIONAL EVALUATION WAS DEVELOPED AS FEES

Agency	Criteria	Fee, \$/SF	Study by
Anaheim	PCI	3.60-11.60	NCE, 2022
Davis	Functional Class and PCI	1.04-1.51	NCE, 2022
Pacifica	Functional Class, Age of the Pavement, Size of the Cut	1.00-4.00	NCE, 2021
Ukiah	Functional Class, Age of the Pavement, Size of the Cut	0.50-4.00	NCE, 2021
Santa Barbara County	Functional Class, PCI, Size of the Cut	0.25-4.00	NCE, 2023
Monterey Park	Functional Class, PCI, Size of the Cut	0.25-2.00	NCE, 2023
San Francisco (City & County)	Age of the Pavement	1.00-3.50	Marcus, 1998
Los Angeles	Functional Class	8.24-19.44	Shahin et al., 2017
Sacramento County, Elk Grove, Santa Cruz	Trench Depth, Functional Class, PCI, Type of Cut	1.80-11.82	Shahin et al., 1996
Santa Ana	Functional Class, Age of the Pavement	10.00-36.00	Shahin et al., 1999

FEE CALCULATION EXAMPLE

- Residential/Arterial Street with a PCI of 60
- \$3.50/Square Foot Fee

UVERSID


- Trench Details: Width = 4' + 2' + 2' = 8'Length = 10' + 2' + 2' = 14'
- Fee Calculation: 8'x14'x \$3.50/SF = **\$392.00**

4' 0

Functional Class	PCI Group	Fees	(\$/SF*)
	PCI ≥ 60	\$	5.00
Arterials/Collectors	25 ≤ PCI < 60	\$	3.50
	PCI < 25	\$	0.00
Residentials	PCI ≥ 70	\$	4.50
	25 ≤ PCI < 70	\$	3.50
	PCI < 25	\$	0.00

* The total square footage includes the zone of influence (2 ft outside the edge of the cut/T-arm).

That the Mobility and Infrastructure Committee recommend that the City Council approve a Trench Cut Fee Schedule to recover costs associated with the damage from trenches and utility cuts on roads

16