

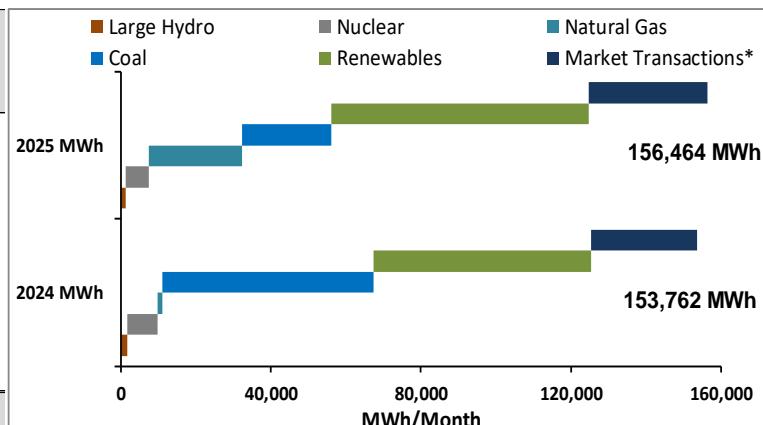
RIVERSIDE PUBLIC UTILITIES

Board Memorandum

BOARD OF PUBLIC UTILITIES

DATE: FEBRUARY 9, 2026

GENERAL MANAGER'S REPORT

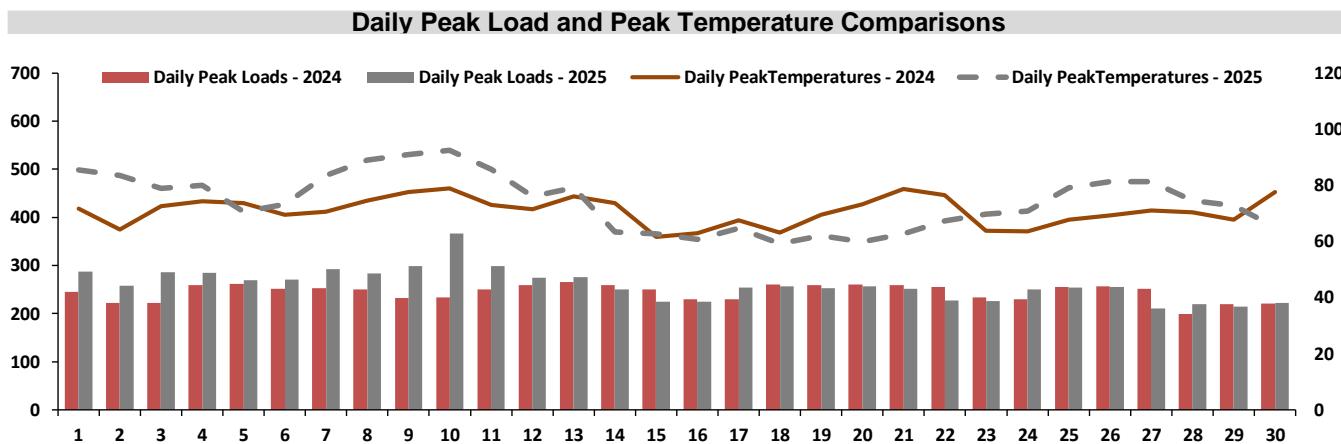

SUBJECT: MONTHLY POWER SUPPLY REPORT – November 30, 2025

Monthly Power Usage:

Total wholesale load at Vista Substation for November 2025 was 156,464 MWh, an 1.76% increase from November 2024 total of 153,762 MWh. The slight increase in load was accompanied by a notable shift in the resource portfolio, primarily due to the Intermountain Power Project (IPP) transitioning its fuel source from coal to natural gas. Natural gas generation rose 1859% (from 1,276 MWh to 25,000 MWh), marking the largest absolute change in the resource portfolio. Coal generation declined 58% (from 56,425 MWh to 23,814 MWh), decreasing by 32,611 MWh year-over-year, reflecting the IPP transition. Renewable output increased 18% (58,014 MWh to 68,541 MWh), adding 10,527 MWh to the total supply. Large hydro output decreased by 21.00% (from 1,625 MWh to 1,283 MWh), consistent with regional hydrological conditions affecting hydro availability. Nuclear generation decreased 24.59% (from 8,031 MWh to 6,056 MWh). Market transactions increased 12% (from 28,391 MWh to 31,770 MWh), increasing wholesale purchases by 3,379 MWh.

Wholesale Resource Mix - November 2024 vs 2025

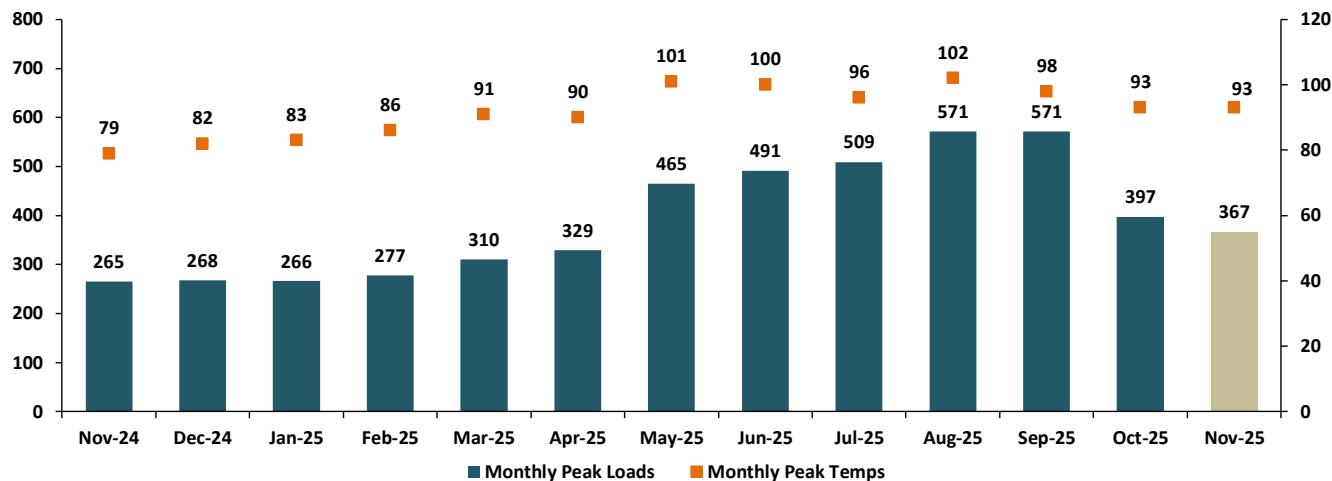
Energy	2024 MWh	2025 MWh	% Δ
Large Hydro	1,625	1,283	-21.0%
Natural Gas	1,276	25,000	1859%
Nuclear	8,031	6,056	-24.59%
Coal	56,425	23,814	-58%
Market Transactions*	28,391	31,770	12%
Renewables	58,014	68,541	18%
Wholesale Load (Vista)	153,762	156,464	1.76%



* The Market Transaction category comprises bilateral power contracts and purchases(sales) from(to) the CAISO.

Daily & Monthly Load & Temperature Trends

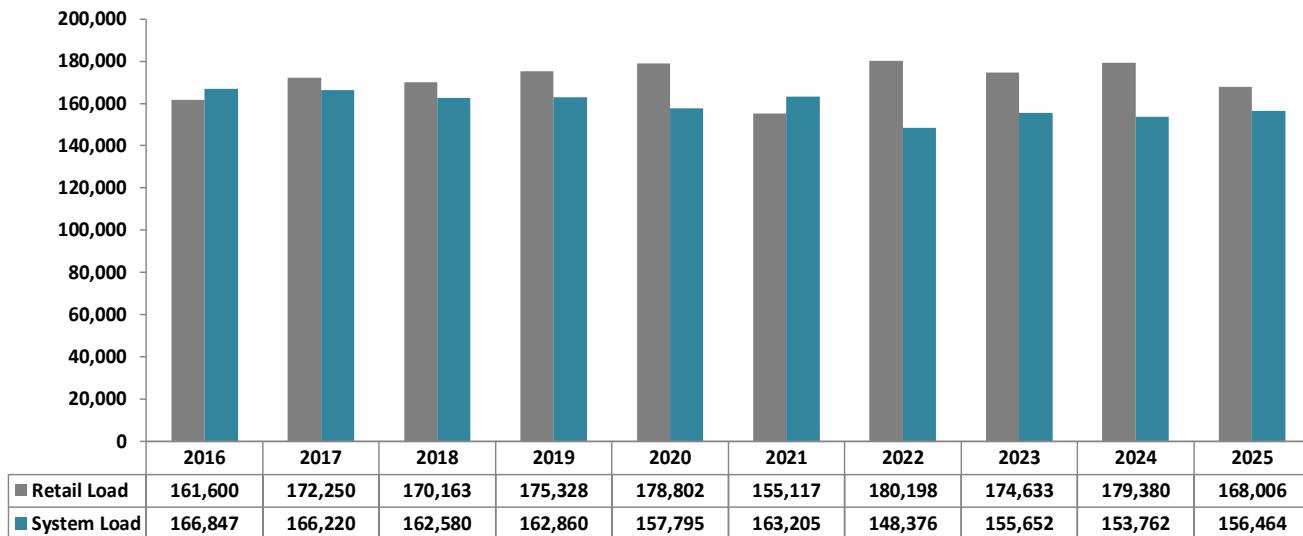
Weather, especially variable temperature, significantly impacts electricity demand. Typically, as temperatures increase, electricity demand will also increase, and vice versa. The charts below graphically illustrate the correlation between weather and electricity demand. However, this temperature peak was not sustained, with cooler conditions following shortly thereafter, which helped prevent prolonged increases in load.


In November 2025, average daily peak temperatures reached 74°F, up from 71°F in November 2024. The monthly maximum temperature hit 93°F in 2025, significantly higher than the 79°F peak recorded in 2024. This 14°F increase in temperatures aligns with the early-month load differences shown in the chart below. November 2025 had 2 days with peak temperatures at or above 90°F, compared to 0 days in November 2024. This indicates that 2025 experienced more days of sustained high temperatures compared to the milder weather patterns in 2024.

The chart displays temperature-sensitive load response patterns. Early November 2025 (days 6-13) showed higher peak loads linked to temperatures around 85°F. In contrast, peak loads in November 2024 remained more stable throughout the month, indicating a lack of extreme heat events. Mid-month 2024 (days 18-23) shows slightly higher temperatures compared to 2025, but with no sustained heat events. At the end of the month 2025 (days 24-30) shows slightly higher temperatures compared to 2024. The average load patterns were higher in November 2025 compared to November 2024. In November 2025, the average daily peak load was 260 MW, considerably higher than the 244 MW average in 2024. The monthly peak load was higher in 2025 at 367 MW, compared to 265 MW in the previous year.

Overall, the 36.37% increase in total monthly load corresponds with higher average temperatures and higher-heat days compared to the previous year, increasing electricity consumption across residential and commercial segments, reinforcing the weather-driven nature of November demand variability.

Monthly Peak Load and Temperature

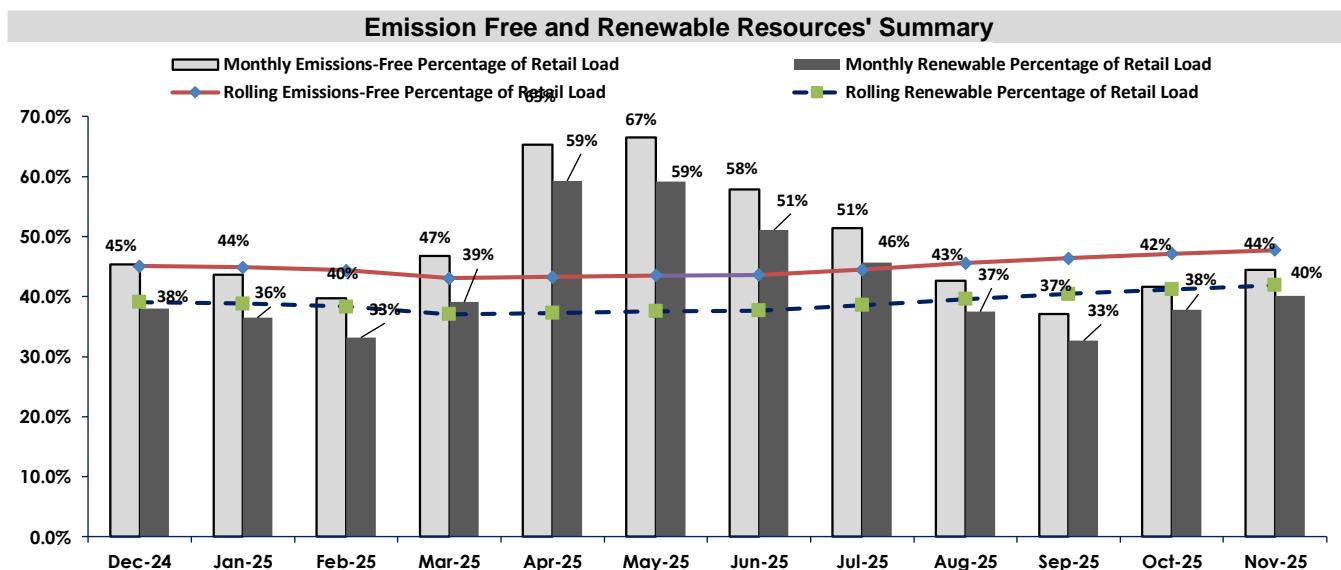


Hourly demand peaked at 367 MW on 11/10/25 HE 17, an increase of 102 MW compared to a peak of 265 MW the same month last year. Riverside's resources covered 70% of the hourly peak demand on 11/10/25.

10-Year Retail Load Trends

The retail load for November 2025 was 168,006 MWh, a decrease of 11,374 MWh from the previous year's total of 179,380 MWh. The System load for November 2025 was 156,564 MWh, an increase of 2,702 MWh from the prior year's reading of 153,762 MWh. The 10-year trend reflects a long-term flattening in electricity demand, both at the retail and system levels, with occasional rebounds that may be attributed to weather and/or economic conditions. Retail load values can also be impacted by the significant adoption of residential PV solar, efficiency programs, available meter data, losses, non-retail obligations, etc.

November Retail & System Loads (MWh/Month): 10-Year Trends

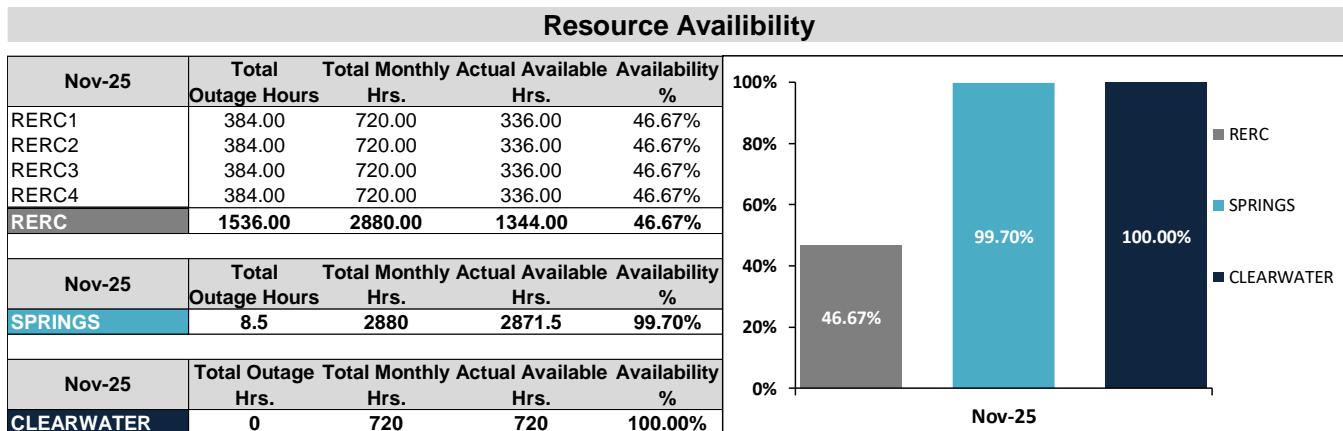


Renewable Generation Trends

In November 2025, renewable generation, as a percentage of retail load, increased by about 3 percentage points from October 2025 and increased by about 8.5 percentage points compared to November 2024. This increase in renewables from October 2025 to November 2025 reflects a combination of wind output, seasonal variation in hydro, and modest shifts in retail load. Lastly, in November 2025, Emissions-Free generation, as a percentage of retail load, increased by about 4 percentage points from October 2025 and increased by 7 percentage points compared to November 2024.

Nuclear generation totaled 6,056 MWh, a 7.9% drop compared to October 2025 (6,576 MWh), and a 24.6% decrease compared to November 2024 (8,031 MWh). Hydroelectric output totaled 1,283 MWh, a 15% decrease from October 2025 and a 21.0% decrease year-over-year, likely due to changing hydrologic conditions. Wind generation totaling 801 MWh, represents an 48.4% decrease from October 2025 (1,553 MWh) and a 18% decrease from November 2024 (1,558 MWh). These decreases reflect mild wind conditions during the month. Solar generation reached 11,455 MWh, down 38.2% from October 2025 and a modest decrease of 11.0% from November 2024. Geothermal output reached 56,285 MWh, a 5.3% decrease from October 2025, and a strong 29% increase over November 2024 due to unplanned outages in 2024.

The accompanying emissions-free and renewable resource summary chart below reflects values within the context of a rolling 12-month trend. While month-to-month variability is expected, the long-term trends remain supportive of emission-free resource development, with nuclear and geothermal continuing to provide consistent baseload support.

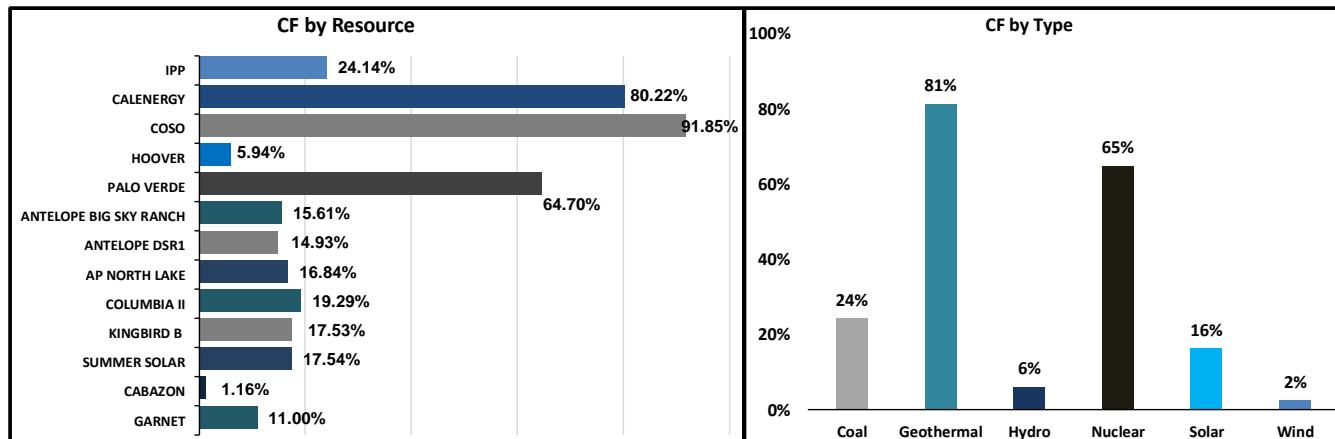


*Riverside's emissions free resources are composed of renewables plus hydro and nuclear

*Riverside's renewable resources are composed of solar, wind and geothermal.

November 2025 Resource Availability - Internal Generation

- RERC's availability for the month was 46.67%.
- Spring's availability for the month was 99.70%.
- Clearwater's availability for the month was 100.00%.


November 2025 Resource Availability – External Resources

Solar resources in November 2025 exhibited capacity factors ranging from 11.89% to 19.29%, reflecting modest seasonal irradiance across most sites. Wind resources showed capacity factors ranging from a low of 1.16% to a high of 11.00%. These values reflect lower wind conditions and further emphasize the intermittent nature of wind as a generation source. Riverside's share of Palo Verde nuclear output delivered steady performance, achieving a 64.70% capacity factor, indicative of reliable baseload generation. Hoover, a hydroelectric resource constrained by lake-level limitations, operated at a 5.94% capacity factor, consistent with its status as an energy-limited asset. IPP, Riverside's coal-based resource, maintained a 24.14% capacity factor due to coal availability limitations. Geothermal resources provided output with capacity factors ranging from 80.22% to 91.85%. It is worth reiterating that intermittent renewable resources, including wind and solar, have capacity factors influenced by natural factors such as cloud cover, blowing wind, etc.

Resource Capacity Factor Table

Nov-25	Resource Type	Max. Monthly MWH	Actual Energy MWH	Capacity Factors
IPP	Coal	98,640	23,814	24.14%
CALENERGY	Geothermal	61,920	49,672	80.22%
COSO	Geothermal	7,200	6,613	91.85%
HOOVER	Hydro	21,600	1,283	5.94%
PALO VERDE	Nuclear	9,360	6,056	64.70%
ANTELOPE BIG SKY RANCH	Solar	7,200	1,124	15.61%
ANTELOPE DSR1	Solar	18,000	2,687	14.93%
AP NORTH LAKE	Solar	14,400	2,425	16.84%
COLUMBIA II	Solar	8,021	1,547	19.29%
KINGBIRD B	Solar	10,080	1,767	17.53%
SUMMER SOLAR	Solar	7,200	1,263	17.54%
TEQUESQUITE	Solar	5,400	642	11.89%
CABAZON	Wind	28,080	326	1.16%
GARNET	Wind	4,320	475	11.00%

Resource Capacity Factor Charts

Resource Outages and Transmission Constraints

- RERC
 - Unit 1 perform various maintenance tasks (fall outage)
 - Unit 2 perform various maintenance tasks (fall outage)
 - Unit 3 perform various maintenance tasks (fall outage)
 - Unit 4 perform various maintenance tasks (fall outage)
- SPRINGS
 - Unit 2 transformer out
- CLEARWATER
 - None